微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

1.1 This practice is a performance-based standard for an electrical method for locating leaks in exposed geomembranes. For clarity, this practice uses the term “leak” to mean holes, punctures, tears, knife cuts, seam defects, cracks, and similar breaches in an installed geomembrane (as defined in 3.2.6).1.2 This practice can be used for geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, canals, and other containment facilities. It is applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous geomembrane, and any other electrically insulating materials. This practice is best applicable for locating geomembrane leaks where the proper preparations have been made during the construction of the facility.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This practice covers procedures for the identification and measurement of the extent of carburization in a metal sample and for the interpretation and evaluation of the effects of carburization. It applies mainly to iron- and nickel-based alloys for high temperature applications. Four methods are described. MethodA Total Mass Gain MethodB Metallographic Evaluation MethodC Carbon Diffusion Profile MethodD Change in Mechanical Properties 1.2 These methods are intended, within the interferences as noted for each, to evaluate either laboratory specimens or commercial product samples that have been exposed in either laboratory or commercially produced environments. 1.3 No attempt is made to recommend particular test exposure conditions, procedures, or specimen design as these may vary with the test objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This test method is used to determine the degree and rate of aerobic biodegradation of plastic materials exposed to a controlled composting environment. Aerobic composting takes place in an environment where temperature, aeration, and humidity are closely monitored and controlled. 1.2 The test is designed to determine the biodegradability of plastic materials, relative to that of a standard material, in an aerobic environment. Aeration of the test reactors is maintained at a constant rate throughout the test and reactor vessels of a size no greater than 4-L volume are used to ensure that the temperature of the vessels is approximately the same as that of the controlled environment chamber. 1.3 Biodegradability of the plastic is assessed by determining the amount of weight loss from samples exposed to a biologically active compost relative to the weight loss from samples exposed to a "poisoned" control. 1.4 The test is designed to be applicable to all plastic materials that are not inhibitory to the bacteria and fungi present in the simulated Municipal Solid Waste (MSW). 1.5 The values stated in SI units are to be regarded as the standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Note 1- There is no similar or equivalent ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 This practice provides a methodology for measuring the duration of wetness on a sensing element mounted on a surface in a location of interest. Experience has shown that the sensing element reacts to factors that cause wetness in the same manner as the surface on which it is mounted.3.2 Surface moisture plays a critical role in the corrosion of metals and the deterioration of nonmetallics. The deposition of moisture on a surface can be caused by atmospheric or climatic phenomena such as direct precipitation of rain or snow, condensation, the deliquescence (or at least the hygroscopic nature) of corrosion products or salt deposits on the surface, and others. A measure of atmospheric or climatic factors responsible for moisture deposition does not necessarily give an accurate indication of the TOW. For example, the surface temperature of an object may be above or below both the ambient and the dew point temperatures. As a result condensation will occur without an ambient meteorological indication that a surface has been subjected to a condensation cycle.3.3 Structural design factors and orientation can be responsible for temperature differences and the consequent effect on TOW as discussed in 4.2. As a result, some surfaces may be shielded from rain or snow fall; drainage may be facilitated or prevented from given areas, and so forth. Therefore various components of a structure can be expected to perform differently depending on mass, orientation, air flow patterns, and so forth. A knowledge of TOW at different points on large structures can be useful in the interpretation of corrosion or other testing results.3.4 In order to improve comparison of data obtained from test locations separated on a macrogeographical basis, a uniform orientation of sensor elements boldly exposed in the direction of the prevailing wind, at an angle of 30° above the horizontal is recommended. Elevation of the sensor above ground level should be recorded.3.5 Although this method does not develop relationships between TOW and levels of ambient relative humidity (RH), long term studies have been carried out to show that the TOW experienced annually by panels exposed under standard conditions is equivalent to the cumulative time the RH is above a given threshold value.2 This time value varies with location and with other factors. Probability curves have been developed for top and bottom surfaces of a standard panel at one location which show the probable times that a surface will be wet as a percentage of the cumulative time the relative humidity is at specific levels.3 If needed, it should be possible to develop similar relationships to deal with other exposure conditions.1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture.1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus.1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The properties evaluated by this test method are intended to provide comparative information on the effects of fire-retardant chemical formulations and environmental conditions on the flexural properties and IB strength of FRSC panels.5.2 This practice uses a controlled elevated-temperature environment to produce temperature-induced losses in the mechanical properties of FRSC panels and untreated panels.5.3 Prediction of performance in natural environments has not been directly correlated with the results of this test method.5.4 The reproducibility of results in elevated-temperature exposure is highly dependent on the type of specimens tested and the evaluation criteria selected, as well as the control of the operating variables. In any testing program, sufficient replicates shall be included to establish the variability of the results. Variability is often observed when similar specimens are tested in different chambers even though the testing conditions are nominally similar and within the ranges specified in this test method.1.1 This test method is designed as a laboratory screening test. It is intended to establish an understanding of the respective contributions of the many wood material, fire-retardant, resin and processing variables, and their interactions, upon the mechanical properties of fire-retarded mat-formed wood structural composite (FRSC) panels as they affect flexural and internal bond (IB) performance and as they are often affected later during exposure to high temperature and humidity. Once the critical material and processing variables have been identified through these small-specimen laboratory screening tests, additional testing and evaluation shall be required to determine the effect of the treatment on the panel structural properties and the effect of exposure to high temperature on the properties of commercially produced FRSC panels. In this test method, treated structural composite panels are exposed to a temperature of 77°C (170°F) and at least 50% relative humidity.1.2 The purpose of the preliminary laboratory-based test method is to compare the flexural properties and IB strength of FRSC panels relative to untreated structural composite panels with otherwise identical manufacturing parameters. The results of tests conducted in accordance with this test method provide a reference point for estimating strength temperature relationships for preliminary purposes. They establish a starting point for subsequent full-scale testing of commercially produced FRSC panels.1.3 This test method does not cover testing and evaluation requirements necessary for product certification and qualification or the establishment of design value adjustment factors for FRSC panels.NOTE 1: One potentially confounding limitation of this preliminary screening test method is that it may be conducted with laboratory panels that may not necessarily represent commercial quality panels. A final qualification program should likely be conducted using commercial quality panels and the scope of the review should include evaluation of the effects of the treatment and elevated temperature exposure on all relevant mechanical properties of the commercially produced panel.1.4 This test method is not intended for use with structural plywood.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Tests conducted in accordance with this practice are intended to induce property changes associated with use exposure to light and heat in typical office environments. These exposures are not intended to simulate the deterioration caused by localized phenomena such as handling, dirt contamination, etc.NOTE 5: Caution: Refer to practice G151 for full cautionary guidance applicable to all laboratory weathering devices. Additional information on sources of variability and on strategies for addressing variability by design and data analysis of laboratory accelerated exposure tests is found in Guide G141.5.2 Variation in results may be expected are possible between the different methods described in this practice. For example, differences in spectral distribution of the lamps used and variations in the irradiance for a single type of lamp can cause significant differences in test results. Therefore, any no reference to the use of this practice should be made unless accompanied by a report prepared in accordance with Section 12 that describes needs to include a reference to the method used.5.3 Reproducibility of test results between laboratories has been shown to be good when the stability of materials is evaluated in terms of performance ranking compared to other materials or to a control. Therefore, exposure of a similar material of known performance (a control) at the same time as the test materials is strongly recommended. It is recommended that at least three replicates of each material be exposed to allow for statistical evaluation of results.1.1 This practice covers the basic principles and operating procedures for using fluorescent light to determine color stability of plastics when materials are exposed in typical office environments where fluorescent overhead lighting and window-filtered daylight are used for illumination and where temperature and humidity conditions are in accordance with American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) recommendations for workers' comfort.1.2 This practice describes four methods where specimens are exposed to fluorescent light under controlled environmental conditions. Two of the methods use an exposure device that provides for mixing of fluorescent lamps and two of the methods use devices that comply with Practice G154.NOTE 1: Method I uses cool white fluorescent lamps and window glass filtered fluorescent UVB lamps and is the same method described in previous versions of this standard.1.3 Specimen preparation and evaluation of the results are covered in ASTM methods or specifications for specific materials. General guidance is given in Practice G151. More specific information about methods for determining the change in properties after exposure and reporting these results is described in Practice D5870.1.4 The values stated in SI units are to be regarded as the standard.1.5 Unless otherwise specified, all dimensions are nominal.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.NOTE 2: There is no known ISO equivalent to this standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

3.1 This test method is useful in determining the relative anti-swelling efficiency of various water-repellent formulations when applied to wood. It is the initial means of estimating the ability of water-repellent treated wood to perform satisfactorily when exposed to liquid water environments.3.2 The swelling differences of untreated wood species when subjected to water immersion can also be determined by this test method.3.3 This method is a basic screening test and thus provides an initial determination of the anti-swelling efficiency of water repellents. It is a qualitative method designed to provide a reproducible means of establishing: (1) the anti-swelling efficiency of water-repellent formulations, and (2) the relative swelling of untreated wood species when both are exposed to liquid water environments.1.1 This test method is designed to evaluate the effectiveness of water-repellent compositions for retarding dimensional changes in coated wood submerged in water. It can also be used to measure the differential swelling of untreated wood when exposed to liquid water environments. The compositions tested are designed to be mixed until uniform and applied by brush, roller, dip or spray to an exterior wood surface.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
37 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页