微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 It is well known that the prepreg impregnation level affects handling characteristics, tack and drape, and final part quality. Resin impregnation level is the dominant factor in the ability of removing air and volatiles from the layup during processing. Partially impregnated prepreg materials can in some applications provide higher quality, lower void content composite parts, and are becoming increasingly more common due to the desire to cure out-of-autoclave, using vacuum bag-only processes. This test can identify small changes in the material impregnation level which can assist in definition of production processes or shipping and handling procedures. The value of permeability can be used for specifying ranges as acceptance requirements for prepreg materials, thus enabling the prepreg manufacturer and user greater confidence in the ability to produce repeatable and high quality parts. This test directly determines the actual air flow propensity of the material tested without any applied compaction pressure during testing.5.2 Factors that influence the permeability of the tested prepreg material shall be reported including: prepreg material, orientation, location on roll, width, length, thickness, and actual atmospheric pressure.1.1 This test method determines the in-plane permeability of composite prepreg (pre-impregnated) materials as a measure of level of impregnation. Permissible prepreg materials include those reinforced with carbon, glass, aramid, thermoplastic and other fibers impregnated with a thermoset or thermoplastic matrix resin, creating a single ply sheet material. The reinforcements may be unidirectional or woven fabrics.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is for use by installers who are involved in the rehabilitation of conduits through the use of a mobile, automated CIPP impregnation system to manufacture resin impregnated tube installed through an existing conduit. As for any practice, modifications may be required for specific job conditions.1.1 This practice describes the procedures for the impregnation of 2 in. to 48 in. (50 mm to 1200 mm) diameter cured-in-place pipe utilizing mobile, automated systems. Temporary impregnation facilities set up at the jobsite (“over-the-hole” wet outs) are not covered under this standard. Once resin saturation is complete, the wet out liner is then used to rehabilitate existing gravity flow or pressure pipelines, process piping, electrical conduits or ventilation systems.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Oil content values are generally contained in specifications for oil-impregnated PM bearings.5.2 The oil-impregnation efficiency provides an indication of how well the as-received parts had been impregnated.5.3 The desired self-lubricating performance of PM bearings requires a minimum amount of surface-connected porosity and satisfactory oil impregnation of the surface-connected porosity. A minimum oil content is specified.5.4 The results from these test methods may be used for quality control or compliance purposes.1.1 This standard describes three related test methods that cover the measurement of physical properties of oil-impregnated powder metallurgy products.1.1.1 Determination of the volume percent of oil contained in the material.1.1.2 Determination of the efficiency of the oil-impregnation process.1.1.3 Determination of the percent surface-connected porosity by oil impregnation.1.2 Units—With the exception of the values for density and the mass used to determine density, for which the use of the gram per cubic centimetre (g/cm3) and gram (g) units is the long-standing industry practice, the values in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D8091-21 Standard Guide for Impregnation of Graphite with Molten Salt Active 发布日期 :  1970-01-01 实施日期 : 

5.1 The molten salt reactor is a nuclear reactor which uses graphite as reflector and structural material and fluoride molten salt as coolant. The graphite components will be submerged in the molten salt during the lifetime of the reactor. The porous structure of graphite may lead to molten salt permeation, which can affect the thermal and mechanical properties of graphite. Consequently, it is important to assess the effect of impregnation of molten salt on the properties of the as-manufactured graphite material.5.2 The purpose of this guide is to report considerations that should be included in the preparation of graphite specimens representative of that after exposure to a molten salt environment. The degree to which the molten salt will infiltrate the graphite will depend upon a number of factors, including the type of graphite and the type and extent of porosity, the properties of the molten salt, the impregnation pressure and temperature, and the duration of the exposure of the graphite to the molten salt.5.3 The user of this guide will need to select impregnation parameters sufficiently representative of those in a molten salt reactor based on parameters provided by the designer. Alternatively, the user may select a standard set of impregnation conditions to allow comparisons across a range of graphites.5.4 This guide is not intended to be prescriptive. A typical apparatus and associated procedure are described. Some indication of the sensitivity of the procedure to graphite type and impregnation conditions is given in He, et al.55.5 There are four major practical issues that must be addressed during the impregnation process:5.5.1 The density of molten salt is greater than that of graphite. A specially designed tool is required to submerge graphite samples in the molten salt during the impregnation process.5.5.2 Some molten salts (for example, FLiBe) are poisonous and it is therefore necessary to provide containment by performing procedures within a glove box.5.5.3 The graphite must be kept away from air to avoid oxidation at high temperature. This can be achieved by performing the impregnation process within a glove box with a controlled atmosphere.5.5.4 Pressure control of the molten salt can be difficult to achieve. A specially designed autoclave is needed to hold the specimen and molten salt.5.6 In order to assess the quantity of molten salt in the graphite, parameter D is used as a variable in measuring the mechanical and thermal material properties. Parameter Do is the ratio of salt volume to open pore volume. Parameter Dt is the ratio of salt volume to total pore volume. The saturated value of Do can be greater than 1 when the molten salt impregnation takes place at high pressure. It is postulated that the internal microstructure of graphite has been damaged by the high impregnation pressure and some closed pores have been opened. In this case, the parameter Dt is more appropriate to represent the impregnation process.1.1 This guide covers procedures for the impregnation of graphite with molten salt under a consistent pressure and temperature. Such procedures are necessary if the user wishes to prepare graphite specimens for testing that represent material that has been exposed to a molten salt environment in a molten salt nuclear reactor. The user will need to ensure that impregnation temperature and pressure conditions reflect those pertaining to the molten salt environment, noting that the properties of the material will change once it becomes irradiated.NOTE 1: The term impregnation is used throughout this guide as this is the correct term for the described process. Other terms such as infiltration and intrusion may be encountered by the user in other texts and the term intrusion is commonly used to describe penetration of open porosity in graphite in a molten salt reactor environment.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this guide.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
4 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页