微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 923元 / 折扣价: 785

在线阅读 收 藏

定价: 124元 / 折扣价: 106 加购物车

在线阅读 收 藏

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

This specification covers design and construction, physical properties, and performance requirements for cooktops which utilize induction as a means for cooking and warming food in commercial and institutional food service establishments. Included are tabletop units, drop-in units and floor standing equipment with integral induction hobs. Testing methods include temperature control accuracy test, dry pan test, minimum load detection test, operating power test, and induction cooktop efficiency test.1.1 This specification covers cooktops which utilize induction as a means for cooking and warming food in commercial and institutional food service establishments. Included are tabletop units, drop-in units and floor standing equipment with integral induction hobs.1.2 The values stated in inch-pound units are to be regarded as the standard. The SI values given in parentheses are provided for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

5.1 The OIT is a qualitative assessment of the level (or degree) of stabilization of the material tested. This test has the potential to be used as a quality control measure to monitor the stabilization level in formulated resin as received from a supplier, prior to extrusion.NOTE 2: The OIT measurement is an accelerated thermal-aging test, and as such can be misleading. Caution should be exercised in data interpretation since oxidation reaction kinetics are a function of temperature and the inherent properties of the additives contained in the sample. For example, OIT results are often used to select optimum resin formulations. Volatile antioxidants may generate poor OIT results even though they may perform adequately at the intended use temperature of the finished product.NOTE 3: There is no accepted sampling procedure, nor have any definitive relationships been established for comparing OIT values on field samples to those on unused products, hence the use of such values for determining life expectancy is uncertain and subjective.1.1 This test method covers a procedure for the determination of the oxidative induction time (OIT) of polyolefin geosynthetics using differential scanning calorimetry.1.2 The focus of the test is on geomembranes, but geogrids, geonets, geotextiles, and other polyolefin-related geosynthetics are also suitable for such evaluation.1.3 The values stated in SI units are to be regarded as the standard.NOTE 1: This standard and ISO 11357-6 2013 address the same subject matter, but differ in technical content.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1. Scope 1.1 This Standard specifies the test methods to be used in measuring the energy efficiency of three-phase induction motors, in support of a consumer/user information program. The method of determining and marking the nominal efficiency valu

定价: 592元 / 折扣价: 504

在线阅读 收 藏

5.1 This test method measures the time to extrapolated onset of an exothermic reaction under constant temperature (isothermal) conditions for reactions which have an induction period, for example, those which are catalytic, autocatalytic, or accelerating in nature or which contain reaction inhibitors.5.2 The RIT determined by this test method is an index measurement that is useful for comparing one material to another at the test temperature of interest and in the same apparatus type only.5.3 This test method is a useful adjunct to dynamic thermal tests, such as Test Method E537, which are performed under conditions in which the sample temperature is increased continuously at constant rate. Results obtained under dynamic test conditions may result in higher estimates of temperature at which an exothermic reaction initiates because the detected onset temperature is dependent upon the heating rate and because dynamic methods allow insufficient time for autocatalytic reactions to measurably affect the onset temperature.5.4 RIT values determined under a series of isothermal test conditions may be plotted as their logarithm versus the reciprocal of the absolute temperature to produce a plot, the slope of which is proportional to the activation energy of the reaction as described in Test Methods E2070.5.5 This test method may be used in research and development, manufacturing, process and quality control, and regulatory compliance.5.6 This test method is similar to that for oxidation induction time (OIT) (for example, Specification D3350 and Test Methods D3895, D4565, D5483, D6186, and E1858) where the time to the oxidation reaction under isothermal test conditions is measured. The OIT test method measures the presence of antioxidant packages and is a relative measurement of a material’s resistance to oxidation.1.1 This test method describes the measurement of reaction induction time (RIT) of chemical materials that undergo exothermic reactions with an induction period. The techniques and apparatus described may be used for solids, liquids, or slurries of chemical substances. The temperature range covered by this test method is typically from ambient to 400 °C. This range may be extended depending upon the apparatus used.1.2 The RIT is a relative index value, not an absolute thermodynamic property. As an index value, the RIT value may change depending upon experimental conditions. A comparison of RIT values may be made only for materials tested under similar conditions of apparatus, specimen size, and so forth. Furthermore, the RIT value may not predict behavior of large quantities of material.1.3 The RIT shall not be used by itself to establish a safe operating temperature. It may be used in conjunction with other test methods (for example, Test Methods E487 and E537, and Guide E1981) as part of a hazard analysis of a particular operation.1.4 This test method may be used for RIT values greater than 15 min (as relative imprecision increases at shorter periods).1.5 This test method is used to study catalytic, autocatalytic, and accelerating reactions. These reactions depend upon time as well as temperature. Such reactions are often studied by fixing one experimental parameter (that is, time or temperature) and then measuring the other parameter (that is, temperature or time). This test method measures time to reaction onset detection under isothermal conditions. It is related to Test Method E487 that measures detected reaction onset temperature under constant time conditions1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this test method.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The induction period may be used as an indication of the tendency of motor gasoline to form gum in storage. It should be recognized, however, that its correlation with the formation of gum in storage may vary markedly under different storage conditions and with different gasolines.1.1 This test method covers the determination of the stability of gasoline in finished form only, under accelerated oxidation conditions. (Warning—This test method2 is not intended for determining the stability of gasoline components, particularly those with a high percentage of low boiling unsaturated compounds, as these may cause explosive conditions within the apparatus. However, because of the unknown nature of certain samples, the pressure vessel assembly shall include a safety burst-disc in order to safeguard the operator.)NOTE 1: For measurement of oxidation stability of gasoline by measurement of potential gum, refer to Test Method D873, or IP Test Method 138.NOTE 2: The precision data were developed with gasolines derived from hydrocarbon sources only without oxygenates.1.2 The accepted SI unit of pressure is the kilo Pascal (kPa), and of temperature is °C.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The OIT is a qualitative assessment of the level (or degree) of stabilization of the material tested. This test has the potential to be used as a quality control measure to monitor the stabilization level in formulated resin as received from a supplier, prior to extrusion.NOTE 2: The OIT measurement is an accelerated thermal-aging test and as such can be misleading. Caution should be exercised in data interpretation since oxidation reaction kinetics are a function of temperature and the inherent properties of the additives contained in the sample. For example, OIT results are often used to select optimum resin formulations. Volatile antioxidants may generate poor OIT results even though they may perform adequately at the intended use temperature of the finished product.NOTE 3: There is no accepted sampling procedure, nor have any definitive relationships been established for comparing OIT values on field samples to those on unused products, hence the use of such values for determining life expectancy is uncertain and subjective.1.1 This test method outlines a procedure for the determination of oxidative-induction time (OIT) of polymeric materials by differential scanning calorimetry (DSC). It is applicable to polyolefin resins that are in a fully stabilized/compounded form.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards information is given in Section 8.NOTE 1: This standard and ISO 11357–6 2013 address the same subject matter, but differ in technical content.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method covers the indirect measurement of the pavement thickness to provide a rapid, nondestructive result. The method is used to determine the compliance of asphalt or concrete pavement construction with the thickness specifications. The nondestructive thickness results for concrete pavements have shown excellent correlation (R2 values of 99.7 %) with direct measurement of pavement thickness using AASHTO T 148 and Test Method C174/C174M.5.2 Measurement results from MPI devices are unaffected by concrete or asphalt material composition, including the use of slag or other metallic aggregates, material temperature, or moisture content, thus allowing installers a quality control process that provides results that can be used in controlling the paving operation. In addition, quantitative results are produced to document as-built thicknesses.5.3 Infrastructure owners use the same device to perform quality assurance activities and to accept installed facilities. Its accuracy and repeatability allow the reduction or elimination of coring requirements related to pavement thickness determination.1.1 This test method covers the equipment, field procedures, and interpretation of the results for the pavement thickness measurements produced by a magnetic pulse induction (MPI) device. Magnetic pulse induction devices induce a weak-pulsed magnetic field that causes the induction of eddy currents in metal objects disturbing the field. In order to measure pavement thickness with an MPI device, a pre-placed metal reflector is required. When the metal reflector enters into the field, an electrical signal is produced and processed through algorithms to detect and produce quantitative values for pavement thickness.1.2 This test method also provides the details including configuration and metallurgy required to purchase and install reflectors to produce accurate and repeatable results.1.3 This method is intended for use with plain-jointed concrete pavements, asphalt pavements, base courses with cement binders, and unbound aggregate layers. It is not applicable for continuously reinforced, mesh-reinforced, or fiber-reinforced pavement where the metal reinforcement would interfere with the magnetic field.1.4 MPI equipment includes a device that induces the magnetic field and collects the electrical signal. The signal information is collected and processed into pavement thicknesses through algorithms programmed into the device firmware.1.5 MPI field procedures describe the steps and processes required to collect reliable, repeatable, and accurate results from the MPI device. Critical to the accuracy are the metallurgy and configuration of the metal reflectors pre-placed prior to installation of the asphalt or concrete pavement. Also, the absence of any metallic object near the reflector is required to avoid influencing the test result.1.6 MPI results require little interpretation when the correct reflector calibration is selected and used during the field test.1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Oxidation induction time, as determined under the conditions of this test method, can be used as an indication of oxidation stability.3 This test method can be used for research and development, quality control and specification purposes. However, no correlation has been determined between the results of this test method and service performance.1.1 This test method covers the determination of oxidation induction time of lubricating greases subjected to oxygen at 3.5 MPa (500 psig) and temperatures between 155 °C and 210 °C.1.2 Warning—The original data published in Research Report RR:D02-1314, was not analyzed in accordance the current D2PP. It also used instruments which are no longer manufactured and in a check of currently used instruments, none of the original instruments were still in use. The new precision of this test method is still to be established.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Oxidative induction time is a relative measure of the degree of oxidative stability of the material evaluated at the isothermal temperature of the test. The presence, quantity or effectiveness of antioxidants may be determined by this method. The OIT values thus obtained may be compared from one hydrocarbon to another or to a reference material to obtain relative oxidative stability information.5.2 Typical uses include the oxidative stability of edible oils and fats (oxidative rancidity), lubricants, greases, and polyolefins.1.1 These test methods describe the determination of the oxidative properties of hydrocarbons by differential scanning calorimetry or pressure differential scanning calorimetry and is applicable to hydrocarbons that oxidize exothermically in their analyzed form.1.2 Test Method A—A differential scanning calorimeter (DSC) is used at ambient pressure, for example, about 100 kPa of oxygen.1.3 Test Method B—A pressure DSC (PDSC) is used at high pressure, for example, 3.5 MPa (500 psig) oxygen.1.4 Units—The values stated in SI units are to be regarded as standard. Imperial units are provided for user convenience and are not the standard.1.5 These test methods are related to ISO 11357–6 but is different in technical content. These test methods are related to CEC L-85–T but includes additional experimental conditions.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.4 and 12.10.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Absolute and comparative methods provide a means for sorting large quantities of ferrous parts of stock with regard to composition, condition, structure, or processing, or a combination thereof.5.2 The comparative or two-coil method is used when high-sensitivity testing is required. The advantage of this method is that it almost completely suppresses all internal or external disturbances such as temperature variations or stray magnetic fields, provided both the coils and both the reference parts are exposed to the same conditions which are not of relevance.5.3 The ability to accomplish satisfactorily these types of separations is dependent upon the relation of the magnetic characteristics of the ferromagnetic parts to their physical condition.5.4 These methods may be used for high-speed sorting in a fully automated setup where the speed of testing may approach ten specimens per second depending on their size and shape.5.5 The success of sorting ferromagnetic material depends mainly on the proper selection of magnetic field strength and frequency of signal in the test coil, fill factor, and variables present in the sample.5.6 The degree of accuracy of a sort will be affected greatly by the coupling between the test coil field and the test specimen and the accuracy with which the specimen is held in the test coil field during the measuring period. Testing with harmonics can, to a large extent, reduce the sensitivity to accuracy of location.5.7 When high currents are used in the test coil, a means should be provided to maintain a constant temperature of the reference standard in order to minimize measurement drift.1.1 This practice covers the procedure for sorting ferrous metals using the electromagnetic (eddy current/magnetic induction) method. The procedure relates to instruments using absolute or comparator-type coils for distinguishing variations in mass, shape, conductivity, permeability, and other variables such as hardness and alloy that affect the electromagnetic or magnetic properties of the material. The selection of reference standards to determine sorting feasibility and to establish standards is also included.21.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide helps purchasers assess induction processes including the critical parameters that can affect product quality. It guides the evaluation of heat-treating vendor performance and capabilities to ensure higher and more consistent product quality.4.2 Refer to Appendix X1 for a flow chart for the use of this guide.1.1 This guide covers the process control and product properties verification of continuous heat treating of material using a quench and temper induction process (surface hardening, surface heat treating, and batch heat-treated products using induction are not considered in this guide). Examples of products covered by this guide may include products covered by API Specifications 20E, 5L, and 5CT.1.2 This guide indicates some features of induction heat treating compared to furnace heat treating. Induction heat treating processes typically operate at higher temperatures compared to furnace processes.1.3 This guide addresses the features and requirements necessary for induction heating and ancillary equipment. However, induction equipment may be used in combination with convection heating equipment (for example, gas or electric furnaces).1.4 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
25 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页