微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

定价: 384元 / 折扣价: 327 加购物车

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

5.1 This procedure describes a rapid and sensitive method for estimating the stability reserve of an oil. The stability reserve is estimated in terms of a separability number, where a low value of the separability number indicates that there is a stability reserve within the oil. When the separability number is between 0 to 5, the oil can be considered to have a high stability reserve and asphaltenes are not likely to flocculate. If the separability number is between 5 to 10, the stability reserve in the oil will be much lower. However, asphaltenes are, in this case, not likely to flocculate as long as the oil is not exposed to any worse conditions, such as storing, aging, and heating. If the separability number is above 10, the stability reserve of the oil is very low and asphaltenes will easily flocculate, or have already started to flocculate.5.2 This test method can be used by refiners and users of heavy oils, for which this test method is applicable, to estimate the stability reserves of their oils. Hence, this test method can be used by refineries to control and optimize their refinery processes. Consumers of oils can use this test method to estimate the stability reserve of their oils before, during, and after storage.5.3 This test method is not intended for predicting whether oils are compatible before mixing, but can be used for determining the separability number of already blended oils. However, experience shows that oils exhibiting a low separability number are more likely to be compatible with other oils than are oils with high separability numbers.1.1 This test method covers the quantitative measurement, either in the laboratory or in the field, of how easily asphaltene-containing heavy fuel oils diluted in toluene phase separate upon addition of heptane. The result is a separability number (%). See also Test Method D7061.1.2 The test method is limited to asphaltene-containing heavy fuel oils. ASTM specification fuels that generally fall within the scope of this test method are Specification D396, Grade Nos. 4, 5, and 6, Specification D975, Grade No. 4-D, and Specification D2880, Grade Nos. 3-GT and 4-GT. Refinery fractions from which such blended fuels are made also fall within the scope of this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 This test method assesses the performance of an engine oil with respect to control of piston deposits and maintenance of oil consumption under heavy-duty operating conditions selected to accelerate deposit formation in a turbocharged, intercooled four-stroke-cycle diesel engine equipped with a combustion system that minimizes federally controlled exhaust gas emissions.5.2 The results from this test method may be compared against specification requirements to ascertain acceptance.5.3 The design of the test engine used in this test method is representative of many, but not all, diesel engines. This factor, along with the accelerated operating conditions, needs to be considered when comparing test results against specification requirements.1.1 The test method covers a heavy-duty engine test procedure under high output conditions to evaluate engine oil performance with regard to piston deposit formation, piston ring sticking and oil consumption control in a combustion environment designed to minimize exhaust emissions. This test method is commonly referred to as the Caterpillar C13 Heavy-Duty Engine Oil Test.31.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there are no SI equivalent such as screw threads, National Pipe Treads (NPT), and tubing sizes.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Annex A1 for general safety precautions.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

3.1 Some oils are formulated with organo-metallic additives, which act, for example, as detergents, antioxidants, and antiwear agents. Some of these additives contain one or more of these elements: calcium, phosphorus, sulfur, and zinc. This test method provides a means of determining the concentrations of these elements, which in turn provides an indication of the additive content of these oils.3.2 Several additive elements and their compounds are added to the lubricating oils to give beneficial performance (Table 2).3.3 This test method is primarily intended to be used at a manufacturing location for monitoring of additive elements in lubricating oils. It can also be used in central and research laboratories.1.1 This test method covers the quantitative determination of additive elements in unused lubricating oils, as shown in Table 1.1.2 This test method is limited to the use of energy dispersive X-ray fluorescence (EDXRF) spectrometers employing an X-ray tube for excitation in conjunction with the ability to separate the signals of adjacent elements.1.3 This test method uses interelement correction factors calculated from empirical calibration data.1.4 This test method is not suitable for the determination of magnesium and copper at the concentrations present in lubricating oils.1.5 This test method excludes lubricating oils that contain chlorine or barium as an additive element.1.6 This test method can be used by persons who are not skilled in X-ray spectrometry. It is intended to be used as a routine test method for production control analysis.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

A knowledge of the water content of crude oil is important in the refining, purchase, sale, or transfer of crude oils.1.1 This test method covers the determination of water in the range from 0.02 to 2 % in crude oils. Mercaptan and sulfide (S− or H2S) sulfur are known to interfere with this test method (see Section 5).1.2 This test method is intended for use with standard Karl Fischer reagent or pyridine-free Karl Fischer reagents.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method measures the tendency of automotive manual transmission and final drive lubricants to deteriorate under high-temperature conditions, resulting in thick oil, sludge, carbon and varnish deposits, and the formation of corrosive products. This deterioration can lead to serious equipment performance problems, including, in particular, seal failures due to deposit formation at the shaft-seal interface. This test method is used to screen lubricants for problematic additives and base oils with regard to these tendencies.5.2 This test method is used or referred to in the following documents:5.2.1 American Petroleum Institute (API) Publication 1560-Lubricant Service Designations for Automotive Manual Transmissions, Manual Transaxles, and Axles,75.2.2 STP-512A–Laboratory Performance Tests for Automotive Gear Lubricants Intended for API GL-5 Service,85.2.3 SAE J308-Information Report on Axle and Manual Transmission Lubricants,9 and5.2.4 U.S. Military Specification MIL-L-2105D.1.1 This test method is commonly referred to as the L-60-1 test.2 It covers the oil-thickening, insolubles-formation, and deposit-formation characteristics of automotive manual transmission and final drive axle lubricating oils when subjected to high-temperature oxidizing conditions.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.2.1 Exceptions—The values stated in SI units for catalyst mass loss, oil mass and volume, alternator output, and air flow are to be regarded as standard.1.2.2 SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, or where there is a sole source supply equipment specification.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 7 and 8 and Annex A7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This practice is intended to assist the user, in particular the power-plant operations and maintenance departments, to maintain effective lubrication of all parts of the turbine and guard against the onset of problems associated with oil degradation and contamination. The values of the various test parameters mentioned in this practice are purely indicative. In fact, for proper interpretation of the results, many factors, such as type of equipment, operation workload, design of the lubricating oil circuit, and top-up level, should be taken into account.1.1 This practice covers the requirements for the effective monitoring of mineral turbine oils in service in steam and gas turbines, as individual or combined cycle turbines, used for power generation. This practice includes sampling and testing schedules to validate the condition of the lubricant through its life cycle and by ensuring required improvements to bring the present condition of the lubricant within the acceptable targets. This practice is not intended for condition monitoring of lubricants for auxiliary equipment; it is recommended that the appropriate practice be consulted (see Practice D6224).1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Residual fuel oils can contain H2S in the liquid phase and this can result in hazardous vapor phase levels of H2S in storage tank headspaces. The vapor phase levels can vary significantly according to the headspace volume, fuel temperature and agitation. Measurement of H2S levels in the liquid phase provides a useful indication of the residual fuel oil’s propensity to form high vapor phase levels, and lower levels in the residual fuel oil will directly reduce risk of H2S exposure. It is critical, however, that anyone involved in handling fuel oil, such as vessel owners and operators, continue to maintain appropriate safety practices designed to protect the crew, tank farm operators and others who can be exposed to H2S.5.1.1 The measurement of H2S in the liquid phase is appropriate for product quality control, while the measurement of H2S in the vapor phase is appropriate for health and safety purposes.5.2 This test method was developed to provide refineries, fuel terminals and independent testing laboratories, which do not have access to analytical instruments such as a gas chromatograph, with a simple and consistent field test method for the rapid determination of H2S in the vapor phase above residual fuel oils.NOTE 1: D5705 is one of three test methods for quantitatively measuring H2S in residual fuels:1) Test Method D6021 is an analytical test method to determine H2S levels in the liquid phase.2) Test Method D7621 is a rapid test method to determine H2S levels in the liquid phase.NOTE 2: Because of the reactivity, absorptivity and volatility of H2S, any measurement method only provides an H2S concentration at a given moment in time.5.3 This test method does not necessarily simulate the vapor phase H2S concentration in a fuel storage tank. It does, however, provide a level of consistency so that the test result is only a function of the residual fuel oil sample and not the test method, operator, or location. No general correlation can be established between this field test and actual vapor phase concentrations of H2S in residual fuel oil storage or transports. However, a facility that produces fuel oil from the same crude source under essentially constant conditions might be able to develop a correlation for its individual case.1.1 This test method covers the field determination of hydrogen sulfide (H2S) in the vapor phase (equilibrium headspace) of a residual fuel oil sample.1.2 The test method is applicable to liquids with a viscosity range of 5.5 mm2/s at 40 °C to 50 mm2/s at 100 °C. The test method is applicable to fuels conforming to Specification D396 Grade Nos. 4, 5 (Heavy), and 6.1.3 The applicable range is from 5 μmol/mol to 4000 μmol/mol (micromoles per mole) (5 ppm v/v to 4000 ppm v/v (parts per million by volume)).1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method was developed to evaluate the wear performance of engine oils in turbocharged and intercooled four-cycle diesel engines. Obtain results from used oil analysis and component measurements before and after test.The test method may be used for engine oil specification acceptance when all details of the procedure are followed.1.1 This test method covers an engine test procedure for evaluating diesel engine oils for performance characteristics, including lead corrosion and wear of piston rings and cylinder liners. This test method is commonly referred to as the Mack T-9.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Annex A5 for specific safety precautions.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The expanded limits of the Adjunct for VCF are defined in a mixture of terms of customary and metric units. Table 1 shows the defining limits and their associated units in bold italics. Also shown in Table 1 are the limits converted to their equivalent units (and, in the case of the densities, other base temperatures).5.2 Note that only the precision levels of the defining values shown in Table 1 are correct. The other values showing converted units have been rounded to the significant digits shown; as rounded values, they may numerically fall just outside of the actual limits established by the defining values.5.3 Table 2 provides a cross-reference between the historical table designations and the corresponding section in the Adjunct for VCF. Note that procedure paragraphs 11.1.6.3 (U.S. customary units) and 11.1.7.3 (metric units) provide methods for correcting on-line density measurements from live conditions to base conditions and then to compute CTPL factors for continuous volume corrections to base conditions.5.4 When a glass hydrometer is used to measure the density of a liquid, special corrections must be made to account for the thermal expansion of the glass when the temperature is different from that at which the hydrometer was calibrated. The 1980 CTL Tables had generalized equations to correct glass hydrometer readings, and these corrections were part of the printed odd-numbered tables. However, detailed procedures to correct a glass hydrometer reading are beyond the scope of the Adjunct for VCF. The user should refer to the appropriate sections of API MPMS Chapter 9 or other appropriate density/hydrometer standards for guidance.5.5 The set of correlations given in the Adjunct for VCF is intended for use with petroleum fluids comprising either crude oils, refined products, or lubricating oils that are single-phase liquids under normal operating conditions. The liquid classifications listed here are typical terms used in the industry, but local nomenclature may vary. The list is illustrative and is not meant to be all-inclusive.5.6 Crude Oils—A crude oil is considered to conform to the commodity group Generalized Crude Oils if its density falls in the range between approximately –10°API to 100°API. Crude oils that have been stabilized for transportation or storage purposes and whose API gravities lie within that range are considered to be part of the Crude Oil group. Also, aviation Jet B (JP-4) is best represented by the Crude Oil correlation.5.7 Refined Products—A refined product is considered to conform to the commodity group of Generalized Refined Products if the fluid falls within one of the refined product groups. Note the product descriptors are generalizations. The commercial specification ranges of some products may place their densities partly within an adjacent class (for example, a low-density diesel may lie in the jet fuel class). In such cases, the product should be allocated to the class appropriate to its density, not its descriptor. The groups are defined as follows:5.7.1 Gasoline—Motor gasoline and unfinished gasoline blending stock with a base density range between approximately 50°API and 85°API. This group includes substances with the commercial identification of: premium gasoline, unleaded gasoline, motor spirit, clear gasoline, low-lead gas, motor gasoline, catalyst gas, alkylate, catalytic cracked gasoline, naphtha, reformulated gasoline, and aviation gasoline.5.7.2 Jet Fuels—Jet fuels, kerosene, and Stoddard solvents with a base density range between approximately 37°API and 50°API. This group includes substances with the commercial identification of: aviation kerosene K1 and K2, aviation Jet A and A-1, kerosene, Stoddard solvent, JP-5, and JP-8.5.7.3 Fuel Oils—Diesel oils, heating oils, and fuel oils with a base density range between approximately –10°API and 37°API. This group includes substances with the commercial identification of: No. 6 fuel oil, fuel oil PA, low-sulfur fuel oil, LT (low temperature) fuel oil, fuel oil, fuel oils LLS (light low sulfur), No. 2 furnace oil, furnace oil, auto diesel, gas oil, No. 2 burner fuel, diesel fuel, heating oil, and premium diesel.5.8 Lubricating Oils—A lubricating oil is considered to conform to the commodity group Generalized Lubricating Oils if it is a base stock derived from crude oil fractions by distillation or asphalt precipitation. For the purpose of the Adjunct for VCF, lubricating oils have initial boiling points greater than 700 °F (370 °C) and densities in the range between approximately –10°API to 45°API.5.9 Special Applications—Liquids that are assigned the special applications category are generally relatively pure products or homogeneous mixtures with stable (unchanging) chemical composition that are derived from petroleum (or are petroleum-based with minor proportions of other constituents) and have been tested to establish a specific thermal expansion factor for the particular fluid. These tables should be considered for use when:5.9.1 The generalized commodity groups' parameters are suspected of not adequately representing the thermal expansion properties of the liquid.5.9.2 A precise thermal expansion coefficient can be determined by experiment. A minimum of ten temperature/density data points is recommended to use this method. See 11.1.5.2 of the Adjunct for VCF for the procedure to calculate the thermal expansion coefficient from measured density data.5.9.3 Buyer and seller agree that, for their purpose, a greater degree of equity can be obtained using factors specifically measured for the liquid involved in the transaction.5.10 Refer to paragraphs 11.1.2.4 and 11.1.2.5 in the Adjunct for VCF for a complete description of the suitability of the implementation procedures for specific hydrocarbon liquids.1.1 This guide provides information related to the algorithm and implementation procedure but does not contain the full set of algorithms. The algorithms, instructions, procedures, and examples are located in the associated supplementary adjuncts. The Adjunct for Volume Correction Factors (VCF) for temperature and pressure volume correction factors for generalized crude oils, refined products, and lubricating oils provides the algorithm and implementation procedure for the correction of temperature and pressure effects on density and volume of liquid hydrocarbons. Natural gas liquids (NGLs) and liquefied petroleum gases (LPGs) are excluded from consideration in this standard but may be found in API MPMS Chapter 11.2.4/GPA 8217 Temperature Correction for NGL and LPG. As this Adjunct for VCF will be applied to a variety of applications, the output parameters of CTL, Fp, CPL, and CTPL may be used as specified in other standards.1.2 Including the pressure correction in the Adjunct for VCF represents an important change from the “temperature only” correction factors given in the 1980 Petroleum Measurement Tables. However, if the pressure is one atmosphere (the standard pressure), then there is no pressure correction and the standard/adjunct(s) will give CTL values consistent with the 1980 Petroleum Measurement Tables.1.3 The Adjunct for VCF covers general procedures for the conversion of input data to generate CTL, Fp, CPL, and CTPL values at the user-specified base temperature and pressure (Tb, Pb). Two sets of procedures are included for computing volume correction factor: one set for data expressed in customary units (temperature in °F, pressure in psig); the other for the metric system of units (temperature in °C, pressure in kPa or bar).NOTE 1: In contrast to the 1980 Petroleum Measurement Tables, the metric procedures require the procedure for customary units be used first to compute density at 60 °F. This value is then further corrected to give the metric output. The metric procedures now incorporate the base temperature of 20 °C in addition to 15 °C.1.4 The procedures in the Adjunct for VCF recognize three distinct commodity groups: crude oil, refined products, and lubricating oils. A procedure is also provided for determining volume correction for special applications where the generalized commodity groups’ parameters may not adequately represent the thermal expansion properties of the liquid and a precise thermal expansion coefficient has been determined by experiment. Procedures for determining Volume Correction Factors (VCF) for Denatured Ethanol can be found in API MPMS Chapter 11.3.3, Miscellaneous Hydrocarbon Properties—Denatured Ethanol Density and Volume Correction Factors, 3rd edition. Procedures for determining Volume Correction Factors (VCF) for Gasoline and Denatured Ethanol Blends can be found in API MPMS Chapter 11.3.4, Miscellaneous Hydrocarbon Properties—Denatured Ethanol and Gasoline Component Blend Densities and Volume Correction Factors, 1st edition.1.5 The values stated in either SI units or inch‐pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 The quantitative determination of remaining antioxidants for in-service industrial oils by measuring the amount of these additives that have been added to the oil as protection against oxidation. Industrial lubricants, such as turbine oils, compressor oils, gear oils, hydraulic oils, bearing lubricants and greases can be formulated with a wide variety of antioxidants types such as phenols and amines (as primary antioxidants), which are working synergistically and therefore all important to be monitored individually. For in-service oils, the LSV determines and compares the amount of original primary antioxidants remaining after oxidation have reduced its initial concentration.6.2 This guide covers procedures for primary antioxidants such as amines and phenols, as described by Test Method D6971 and D6810.6.3 LSV is not designed or intended to detect all of the antioxidant intermediates formed during the thermal and oxidative stressing of the oils, which are recognized as having some contribution to the remaining useful life of the used or in-service oil. In order to measure the overall stability of an oil (including contribution of intermediates present), and before making final judgment on the remaining useful life of the used oil (which might result in the replacement of the oil reservoir), it is advised to perform additional analytical techniques (in accordance with Practice D4378 and Practice D6224).6.4 This guide is applicable to a wide range of industrial oils, both mineral or synthetic based, which can contain rust and oxidation inhibitors, antiwear additives such as zinc dialkyl dithiophosphates on gear oils, circulating oils, transmission oils and other industrial lubricating oils.6.5 The test is also suitable for manufacturing control and specification acceptance.6.6 When a voltammetric analysis is obtained for a industrial lubricant inhibited with at least one type of antioxidant, there is an increase in the current of the produced voltammogram between 5 s to 8 s (or 0.5 V to 0.8 V applied voltage) (see Note 1) for the zinc dialkyl dithiophosphate type of antioxidant (Fig. 1), an increase in the current of the produced voltammogram between 8 s to 12 s (or 0.8 V to 1.2 V applied voltage) (Fig. 2) (see Note 1) for the aromatic amines, and increase in the current of the produced voltammogram between 13 s and 16 s (or 1.3 V to 1.6 V applied voltage) (see Note 1) for the hindered phenols or carbamates in the neutral acetone solution (Fig. 2: x-axis 1 s = 0.1 V), or both. Hindered phenol antioxidants detected by voltammetric analysis include, but are not limited to, 2,6-di-tert -butyl-4-methylphenol; 2,6-di-tert-butylphenol and 4,4’-Methylenebis(2,6-di-tert-butylphenol). Aromatic amine antioxidants detected by voltammetric analysis include, but are not limited to, phenyl alpha naphthylamines, and alkylated diphenylamines.FIG. 2 Aromatic Amine and Hindered Phenol Voltammetric Response in the Neutral Test Solution with Blank Response ZeroedNOTE 1: Voltages listed with respect to reference electrode. The voltammograms shown in Figs. 1-6 were obtained with a platinum reference electrode and a voltage scan rate of 0.1 V/s.FIG. 3 Hindered Phenol Voltammetric Response in Basic Test Solution with Blank Response ZeroedFIG. 4 Voltammetric Reading for an In-service Oil Sample Comparing Aromatic Amines (additive #1) and Hindered Phenols (additive #2) Peaks (in the Neutral Test Solution)—Standard (top line) and Sample In-Service Oil (lower line)FIG. 5 a Filming Problems Due to Oil SolubilityFIG. 5 b Filming Due to Additive Concentration (continued)FIG. 5 c Filming Problems Due to Oil Solubility (continued)FIG. 6 Shifting of Antioxidant Peaks Due to Oil Solubility6.7 For industrial lubricants containing zinc dialkyl dithiophosphate type of antioxidants, there is an increase in the current of the produced voltammogram between 5 s to 8 s (or 0.5 V to 0.8 V applied voltage) (see Note 1) by using the neutral acetone test solution (see Fig. 1). There is no corresponding ASTM International standard describing the test method procedures for measuring zinc dialkyl dithiophosphates type of antioxidants in industrial lubricants.6.8 For industrial lubricants containing only aromatic amines as antioxidants, there is an increase in the current of the produced voltammogram between 8 s to 12 s (or 0.8 V to 1.2 V applied voltage) (see Note 1) for the aromatic amines, by using the neutral acetone test solution (first peak in Fig. 2) as described in Test Method D6971.6.9 For industrial lubricants containing only hindered phenolic antioxidants, it is preferable to use a basic alcohol solution rather than the neutral acetone solutions, to achieve an increase in the current of the produced voltammogram between 3 s to 6 s (or 0.3 V to 0.6 V applied voltage) (see Note 1) in basic alcohol solution (Fig. 3: x-axis 1 s = 0.1 V) as described in Test Method D6810.1.1 This guide covers the voltammetric analysis for qualitative measurements of primary antioxidants in new or in-service type industrial lubricants detectable in concentrations as low as 0.0075 % by mass up to concentrations found in new oils by measuring the amount of current flow at a specified voltage in the produced voltammogram.1.2 This guide can be used as a resource for a condition monitoring program to track the oxidative health of a range of industrial lubricants which contain primary antioxidants. In order to avoid excessive degradation of the base-oil, these primary antioxidants play a major role to protect the lubricants against thermal-oxidative degradation. This guide can help users with interpretation and troubleshooting results obtained using linear sweep voltammetry (LSV).1.3 When used as part of oil condition monitoring practices, it is important to apply trend analysis to monitor the antioxidant depletion rate relative to a baseline sample rather than use voltammetry for an absolute measurement of the antioxidant concentration. The trending pattern provides a proactive means to identify the level of oil degradation or abnormal changes in the condition of the in-service lubricant.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 While pyrolysis bio-oils are comprised of a large variety of compounds and chemical functional groups, quantification of carbonyl groups is especially important. Carbonyls are known to be responsible for the instability of bio-oil during both storage and processing. This method can be used to quantify the total carbonyl content of bio-oils.1.1 This test method covers the determination of the carbonyl content of bio-oils derived from thermochemical decomposition of lignocellulosic biomass and their deoxygenated products. This method is used for determination of carbonyls between 0.5 and 8 mol/kg.1.2 Review the current and appropriate Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions and proper personal protective equipment.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Some fuel dilution of in-service engine oil is normal under typical operating conditions. However, excessive fuel dilution can lead to decreased performance, premature wear, or sudden engine failure. This test method provides a means of quantifying the level of fuel dilution, allowing the user to take necessary action. This test method does not purport to accurately quantify the specific fuel present in the in-service lubricant samples due to limitations associated with the aging and degradation of the fuel in the crankcase. Rather, quantification of diesel fuel is normalized using a simulated aged fuel.1.1 This test method covers the determination of fuel dilution for in-service engine oil by gas chromatography.1.2 Analysis can be performed directly by this test method without pretreatment or dilution of the sample.1.3 There is no limitation for the determination of the dilution range, provided the amount of sample is within the linear range of the gas chromatograph detector. However, sample dilution can add potential error to the result and may affect the precision obtained as compared to the values presented in Section 14, which were obtained with no dilution.1.4 This test method covers a quantitation range up to 10 % (m/m) for diesel and biodiesel, and up to 5 % (m/m) for gasoline.1.5 The values stated in SI units are to be regarded as standard. Where non-SI units are provided, they are shown in parentheses.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
227 条记录,每页 15 条,当前第 1 / 16 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页