微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 540元 / 折扣价: 459

在线阅读 收 藏

1.1 This test method describes a procedure for measuring the interior pore volume and the apparent pore diameter distribution of porous poly(vinyl chloride) resins. The measurements are made by forcing mercury under increasing pressure through a graduated penetrometer into the open pores of the resin samples. The volume of mercury forced into the pores is defined from the change of the mercury volume in the penetrometer; the apparent pore diameter distribution can be defined from incremental volume changes with increasing pressure. 1.2 Warning-This standard includes the use of an OSHA-designated hazardous chemical (Mercury). For specific hazard information and guidance relative to use, consult the health and safety documents provided by the supplier, for example, the material safety data sheet. 1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Note 1-There are no ISO standards covering the primary subject matter of this test method.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM B276-21 Standard Test Method for Apparent Porosity in Cemented Carbides Active 发布日期 :  1970-01-01 实施日期 : 

4.1 Cemented carbide materials may contain small voids that, depending on the application, may affect the performance of the product. To assist users in specifying the maximum acceptable level of porosity, this test method illustrates a broad range of porosity levels for each of three porosity types. This test method is not intended to be used as a specification, but the levels shown here may be cited in specifications written by producers and users of cemented carbides.1.1 This test method specifies procedures for the metallographic determination of apparent porosity in cemented carbides.NOTE 1: The term “apparent porosity” is construed to mean all microstructures observed on a properly prepared, unetched surface, including structures resulting from uncombined carbon, non-metallic inclusions, etc., as well as true, inherent porosity.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Apparent and true specific gravity, as determined by this test method, are influenced by the type of coals carbonized and the operating and preparational conditions of that carbonization, that is, charge bulk density, heating rate, and pulverization level. In turn, these properties directly influence the performance in processes using coke.1.1 This test method covers the determination of apparent specific gravity (Sections 5 to 9) and true specific gravity (Sections 10 to 14) of lump coke larger than 25 mm [1 in.] size and calculating porosity (Section 15) from the specific gravity data.1.2 Units—The values stated in either SI units or non-SI units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Apparent porosity, water absorption, apparent specific gravity, and bulk density are primary properties of burned refractory brick and shapes. These properties are widely used in the evaluation and comparison of product quality and as part of the criteria for selection and use of refractory products in a variety of industrial applications. These test methods are used for determining any or all of these properties.3.2 These test methods are primary standard methods which are suitable for use in quality control, research and development, establishing criteria for and evaluating compliance with specifications, and providing data for design purposes.3.3 Fundamental assumptions inherent in these test methods are that the test specimens are not attacked by water, the test specimens conform to the requirements for size, configuration, and original faces, the open pores of the test specimens are fully impregnated with water during the boiling treatment, and the blotting of the saturated test specimens is performed as specified in a consistent and uniform manner to avoid withdrawing water from the pores. Deviation from any of these assumptions adversely affects the test results.3.4 In laboratory studies involving castable specimens, a bias was noted between formed 2 by 2 by 2 in. (50 by 50 by 50 mm) and specimens that were quartered from larger 9 by 4.5 by 2.5 (228 by 114 by 64 mm) cast specimens. Additionally, an error in the apparent porosity determination on castables was found whenever the specimens were heated to 1500 °F (816 °C) and then exposed to water as a saturation media (Test Methods C830). The error was attributed to reactivity of cement with water and subsequent re-hydration of cement phases. The higher the cement level of the castable, the greater the error noted. It was concluded that an error in porosity values could occur for refractory materials having a potential to form hydrated species with water.33.5 Certain precautions must be exercised in interpreting and using results from these test methods. All four property values are interrelated by at least two of the three base data values generated during testing. Thus, an error in any base data value will cause an error in at least three of the property values for a given test specimen. Certain of the properties, that is, apparent specific gravity and bulk density, are functions of other factors such as product composition, compositional variability within the same product, impervious porosity, and total porosity. Generalizations on or comparisons of property values should only be judiciously made between like products tested by these test methods or with full recognition of potentially inherent differences between the products being compared or the test method used.1.1 These test methods cover the determination of the following properties of burned refractory brick:1.1.1 Apparent porosity,1.1.2 Water absorption,1.1.3 Apparent specific gravity, and1.1.4 Bulk density.1.2 These test methods are not applicable to refractories attacked by water.1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 For PM materials containing less than two percent porosity, a density measurement may be used to determine if the part has been densified, either overall or in a critical region, to the degree required for the intended application. Density alone cannot be used for evaluating the degree of densification because chemical composition and heat treatment affect the pore-free density.5.2 For cemented carbides, a density measurement is normally used to determine if there is any significant deviation in composition of the carbide grade. For straight tungsten carbide-cobalt grades, the relationship is straightforward. For complex carbide grades (for example, grades containing tantalum carbide or titanium carbide, or both, in addition to tungsten carbide-cobalt), the situation is more complicated. If the measured density is beyond the specified limits, the composition is outside of the specified limits. A measured density within the specified limits does not ensure correct composition; compensation between two or more constituents could result in the expected density with the wrong composition. Density alone cannot be used for evaluating a cemented carbide grade.1.1 This test method covers the determination of density for powder metallurgy (PM) materials containing less than two percent porosity and for cemented carbides. This test method is based on the water displacement method.NOTE 1: A test specimen that gains mass when immersed in water indicates the specimen contains surface-connected porosity. Unsealed surface porosity will absorb water and result in calculated density values higher than the true value. This test method is not applicable if this problem occurs, and Test Methods B962 should be used instead.1.2 Units—With the exception of the values for density and the mass used to determine density, for which the use of the gram per cubic centimetre (g/cm3) and gram (g) units is the long-standing industry practice, the values in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

The volume of an arbitrary P/M shape cannot be accurately measured by standard techniques such as by micrometers or calipers. Since density is mass/volume, a precise method to measure the volume is needed. For nonporous objects, the volume of water displaced by the immersed object is determined by Archimedes principle. For porous P/M parts, a method is required to seal surface connected pores. If the pores are not sealed or the part is not oil impregnated, the part will absorb some of the water and decrease its buoyancy and exhibit an erroneously high density.Density and oil content values are generally contained in the specifications for oil-impregnated bearings and other self-lubricating P/M parts. Desired lubrication requires sufficient interconnected porosity and satisfactory oil impregnation of the porosity.For a particular P/M material, the mechanical properties of P/M structural parts are directly related to their density. Density values are therefore generally contained in the specifications for P/M parts.1.1 This test method covers determination of the density, oil content, and interconnected porosity of sintered bearings and structural parts with or without oil impregnation.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is used to determine the mechanical properties in flexure of engineered ceramic components with multiple longitudinal hollow channels, commonly described as “honeycomb” channel architectures. The components generally have 30 % or more porosity and the cross-sectional dimensions of the honeycomb channels are on the order of 1 mm or greater.5.2 The experimental data and calculated strength values from this test method are used for material and structural development, product characterization, design data, quality control, and engineering/production specifications.NOTE 1: Flexure testing is the preferred method for determining the nominal “tensile fracture” strength of these components, as compared to a compression (crushing) test. A nominal tensile strength is required, because these materials commonly fail in tension under thermal gradient stresses. A true tensile test is difficult to perform on these honeycomb specimens because of gripping and alignment challenges.5.3 The mechanical properties determined by this test method are both material and architecture dependent, because the mechanical response and strength of the porous test specimens are determined by a combination of inherent material properties and microstructure and the architecture of the channel porosity [porosity fraction/relative density, channel geometry (shape, dimensions, cell wall thickness, etc.), anisotropy and uniformity, etc.] in the specimen. Comparison of test data must consider both differences in material/composition properties as well as differences in channel porosity architecture between individual specimens and differences between and within specimen lots.5.4 Test Method A is a user-defined specimen geometry with a choice of four-point or three-point flexure testing geometries. It is not possible to define a single fixed specimen geometry for flexure testing of honeycombs, because of the wide range of honeycomb architectures and cell sizes and considerations of specimen size, cell shapes, pitch, porosity size, crush strength, and shear strength. As a general rule, the experimenter will have to define a suitable test specimen geometry for the particular honeycomb structure of interest, considering composition, architecture, cell size, mechanical properties, and specimen limitations and using the following guidelines. Details on specimen geometry definition are given in 9.2.5.4.1 Four-point flexure (Test Method A1) is strongly preferred and recommended for testing and characterization purposes. (From Test Method C1161 section 4.5: “The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be much greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature and fracture toughness testing, and it is sometimes helpful in Weibull statistical studies. However, four-point flexure is preferred and recommended for most characterization purposes.”)5.4.2 The three-point flexure test configuration (Test Method A2) may be used for specimens which are not suitable for 4-point testing, with the clear understanding that 3-point loading exposes only a very small portion of the specimen to the maximum stress, as compared to the much larger maximum stress volume in a 4-point loading configuration. Therefore, 3-point flexural strengths are likely to be greater than 4-point flexural strengths, based on statistical flaw distribution factors.5.5 Test Method B (with a specified specimen size and a 4-point-1/4 point flexure loading geometry) is widely used in industry for cordierite and silicon carbide honeycomb structures with small cell size (cell pitch ~2 mm). Test Method B is provided as a standard test geometry that provides a baseline specimen size for honeycomb structures with appropriate properties and cell size with the benefit of experimental repeatability, reproducibility and comparability. (See 9.3 for details on Test Method B.)NOTE 2: Specific fixture and specimen configurations were chosen for Test Method B to provide a balance between practical configurations and linear cell count effect limits and to permit ready comparison of data without the need for Weibull-size scaling.5.6 The calculation of the flexure stress in these porous specimens is based on small deflection elastic beam theory with assumptions that (1) the material properties are isotropic and homogeneous, (2) the moduli of elasticity in tension and compression are identical, and (3) the material is linearly elastic. If the porous material in the walls of the honeycomb is not specifically anisotropic in microstructure, it is also assumed that the microstructure of the wall material is uniform and isotropic. To understand the effects of some of these assumptions, see Baratta et al. (6).NOTE 3: These assumptions may limit the application of the test to comparative type testing such as used for material development, quality control, and flexure specifications. Such comparative testing requires consistent and standardized test conditions both for specimen geometry and porosity architecture, as well as experimental conditions—loading geometries, strain rates, and atmospheric/test conditions.5.7 Three flexure strength values (defined in Section 3 and calculated in Section 11) may be calculated in this test method. They are the nominal beam strength, the wall fracture strength, and the honeycomb structure strength.5.7.1 Nominal Beam Strength—The first approach to calculating a flexure strength is to make the simplifying assumption that the specimen acts as a uniform homogeneous material that reacts as a continuum. Based on these assumptions, a nominal beam strength SNB can be calculated using the standard flexure strength equations with the specimen dimensions and the breaking force. (See Section 11.)5.7.1.1 A linear cell count effect (specimen size-cell count effect) has been noted in research on the flexure strength of ceramic honeycomb test specimens (7, 8). If the cell size is too large with respect to the specimen dimensions and if the linear cell count (the integer number of cells along the shortest cross-sectional dimension) is too low (<15), channel porosity has a geometric effect on the moment of inertia that produces an artificially high value for the nominal beam strength. (See Appendix X1.) With the standard elastic beam equations the strength value is overestimated, because the true moment of inertia of the open cell structure is not accounted for in the calculation.5.7.1.2 This overestimate becomes increasingly larger for specimens with lower linear cell counts. The linear cell count has to be 15 or greater for the calculated nominal beam strength, SNB, to be within a 10 % overestimate of the wall fracture strength SWF.NOTE 4: The study by Webb, Widjaja, and Helfinstine (7) showed that for cells with a square cross section a minimum linear cell count of 15 should be maintained to minimize linear cell count effects on the calculated nominal beam strength. (This study is summarized in Appendix X1.)5.7.1.3 For those smaller test specimens (where the linear cell count is between 2 and 15), equations for wall fracture strength and honeycomb structure strength are given in Section 11. These equations are used to calculate a more accurate value for the flexure strength of the honeycomb, as compared to the calculated nominal beam strength.5.7.2 Wall Fracture Strength, SWF, is calculated using the true moment of inertia of the honeycomb architecture, based on the geometry, dimensions, cell wall thickness, and linear count of the channels in the honeycomb structure. The wall fracture strength is a calculation of the true failure stress in the outer fiber surface of the specimen. (Appendix X1 describes the calculation as cited in the Webb, Widjaja, and Helfinstine (7) report). Section 11 on calculations gives the formula for calculating the moment of inertia for test specimens with square honeycomb channels and uniform cell wall thickness.NOTE 5: The moment of inertia formula given in Section 11 and Appendix X1 is only applicable to square cell geometries. It is not suitable for rectangular, circular, hexagonal, or triangular geometries. Formulas for those geometries have to be developed from geometric analysis and first principles.5.7.3 Honeycomb Structure Strength, SHS, is calculated from the wall fracture strength SWF. This calculation gives a flexure strength value which is independent of specimen-cell size geometry effects. The honeycomb structure strength value can be used for comparison of different specimen geometries with different channel sizes. It also gives a flexure strength value that can be used for stress models that assume continuum strength. (See Appendix X1.) Section 11 on calculations gives the formula for calculating the honeycomb structure strength for test specimens with square honeycomb channels and uniform cell wall thickness.5.7.4 The following recommendations are made for calculating a flexure strength for the ceramic honeycomb test specimens.5.7.4.1 For flexure test specimens where the linear cell count is 15 or greater, the nominal beam strength SNB calculation and the honeycomb structure strength SHS are roughly equivalent in value (within 10 %). The nominal beam strength SNB calculation can be used considering this variability.5.7.4.2 For flexure test specimens where the linear cell count is between 5 and 15, the nominal beam strength SNB calculation may produce a 10 % to 20 % overvalue. The SNB value should be used with caution.5.7.4.3 For flexure test specimens where the linear cell count is less than 5, the nominal beam strength SNB calculation may produce a 20 % to 100 % overvalue. It is recommended that the honeycomb structure strength SHS be calculated and used as a more accurate flexure strength number.5.7.4.4 If specimen availability and test configuration permit, test specimens with a linear cell count of 15 or greater are preferred to reduce the specimen linear cell count effect on nominal beam strength SNB to less than 10 %.5.8 Flexure test data for porous ceramics will have a statistical distribution, which may be analyzed and described by Weibull statistics, per Practice C1239.5.9 This flexure test can be used as a characterization tool to assess the effects of fabrication variables, geometry and microstructure variations, and environmental exposure on the mechanical properties of the honeycombs. The effect of these variables is assessed by flexure testing a specimen set in a baseline condition and then testing a second set of specimens with defined changes in geometry or fabrication methods or after controlled environmental exposure.5.9.1 Geometry and microstructure variations would include variations in cell geometry (shape dimensions, cell wall thickness, and count) and wall porosity (percent, size, shape, morphology, etc.).5.9.2 Fabrication process variations would include forming parameters, drying and binder burn-out conditions, sintering conditions, heat treatments, variations in coatings, etc.5.9.3 Environmental conditioning would include extended exposure at different temperatures and different corrosive atmospheres (including steam).5.10 This flexure test may be used to assess the thermal shock resistance of the honeycomb ceramics, as described in Test Method C1525.5.11 The flexure test is not the preferred method for determining the Young's modulus of these porous structures. (For this reason, the deflection of the flexure test bar is not commonly measured in this test.) Young's modulus measurements by sonic resonance (Test Method C1198) or by impulse excitation (Test Method C1259) give more reliable and repeatable data.5.12 It is beyond the scope of this standard to require fractographic analysis at the present time. Fractographic analysis for critical flaws in porous honeycomb ceramics is extremely difficult and of very uncertain value.1.1 This test method covers the determination of the flexural strength (modulus of rupture in bending) at ambient conditions of advanced ceramic structures with 2-dimensional honeycomb channel architectures.1.2 The test method is focused on engineered ceramic components with longitudinal hollow channels, commonly called “honeycomb” channels (see Fig. 1). The components generally have 30 % or more porosity and the cross-sectional dimensions of the honeycomb channels are on the order of 1 mm or greater. Ceramics with these honeycomb structures are used in a wide range of applications (catalytic conversion supports (1),2 high temperature filters (2, 3), combustion burner plates (4), energy absorption and damping (5), etc.). The honeycomb ceramics can be made in a range of ceramic compositions—alumina, cordierite, zirconia, spinel, mullite, silicon carbide, silicon nitride, graphite, and carbon. The components are produced in a variety of geometries (blocks, plates, cylinders, rods, rings).FIG. 1 General Schematics of Typical Honeycomb Ceramic Structures1.3 The test method describes two test specimen geometries for determining the flexural strength (modulus of rupture) for a porous honeycomb ceramic test specimen (see Fig. 2):FIG. 2 Flexure Loading ConfigurationsL = Outer Span Length (for Test Method A, L = User defined; for Test Method B, L = 90 mm)NOTE 1: 4-Point-1/4 Loading for Test Methods A1 and B.NOTE 2: 3-Point Loading for Test Method A2.1.3.1 Test Method A—A 4-point or 3-point bending test with user-defined specimen geometries, and1.3.2 Test Method B—A 4-point-1/4 point bending test with a defined rectangular specimen geometry (13 mm × 25 mm × > 116 mm) and a 90 mm outer support span geometry suitable for cordierite and silicon carbide honeycombs with small cell sizes.1.4 The test specimens are stressed to failure and the breaking force value, specimen and cell dimensions, and loading geometry data are used to calculate a nominal beam strength, a wall fracture strength, and a honeycomb structure strength.1.5 Test results are used for material and structural development, product characterization, design data, quality control, and engineering/production specifications.1.6 The test method is meant for ceramic materials that are linear-elastic to failure in tension. The test method is not applicable to polymer or metallic porous structures that fail in an elastomeric or an elastic-ductile manner.1.7 The test method is defined for ambient testing temperatures. No directions are provided for testing at elevated or cryogenic temperatures.1.8 The values stated in SI units are to be regarded as standard (IEEE/ASTM SI 10). English units are sparsely used in this standard for product definitions and tool descriptions, per the cited references and common practice in the US automotive industry.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

This test method details the standard procedure for determining the porosity of white or near white mineral spirits insoluble paint film by staining to indicate the degree to which a subsequent coat will penetrate. This test method shall require the use of film applicators, reflectometer, vacuum drawdown plate, camelhair brush, plastic wash bottle, test panel, penetrating medium, and filter paper. The test paint is applied to a nonporous surface, air dried, then measured for reflectance. A special colored penetrating medium is applied, the excess removed in a specified manner, and reflectance measured again. The difference between the two readings indicates the degree of porosity; the smaller the difference, the lower the porosity of the film and the greater its ability to resist penetration.1.1 This test method covers the determination of the porosity of a white or near white mineral spirits insoluble paint film to indicate the degree to which a subsequent coat will penetrate.1.2 The texture of the film can affect cleanup that will influence the results of the test. A stain applied to a high-hiding paint will not lower the reflectance as much as the same stain applied to a low-hiding paint of equal porosity. These points must be considered in comparing different paints.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The ability of a substrate surface to readily absorb water is a key indicator in determining how to correctly install many types of flooring adhesives, primers, self-leveling underlayments, and other products. Several flooring industry publications such as CRI’s Carpet Installation Standard, RFCI’s Recommended Installation Practice for Homogenous Sheet Flooring, Fully-Adhered, as well as most flooring, adhesive, primer, and underlayment manufacturers reference substrate surface porosity criteria in their application instructions since this directly impacts the spread rate of directly applied material, the open time, and other critical installation factors.5.2 Installing flooring products over low or non-absorptive (sometimes referred to as “non-porous”) substrates such as densely machine-troweled concrete, mature and well-hydrated concrete, existing resilient flooring, polymer terrazzo and others may require adjustments to the surface preparation method or product selection to ensure a successful installation.5.3 Use this practice to obtain a qualitative assessment of substrate water absorption (porosity) and whether or not that substrate should be regarded as porous/absorptive or non-porous/non-absorptive as these terms relate to the installation of resilient floor coverings, adhesives, self-leveling underlayments, primers, and other products. This practice will produce results directly applicable to determining appropriate surface preparation requirements in accordance with manufacturer’s specifications, but it is in no way meant to replace published manufacturer’s literature regarding the determination of substrate water absorption (porosity) and the impact such has, if any, on substrate preparation requirements and on the installation of their respective materials.5.4 Substrates that evidence immediate absorption, are chalky or dusty, or have varying degrees of absorption may require priming or other additional surface preparation prior to subsequent installations.5.5 Substrates that evidence no absorption may indicate the presence of a contaminant that may negatively impact proper adhesion. In such cases, bond tests performed in accordance with the particular manufacturer’s established guidelines are strongly recommended.5.6 The size, shape, and color of the water drop may indicate the presence of contaminants or other special circumstances that may require discussion with the manufacturer of the slab covering to be installed.5.7 Some surfaces such as concrete can become denser and less porous/less absorptive over time as the material continues to gain strength and densify. The results obtained reflect only the conditions of the substrate at the time and location of the test(s).1.1 This practice covers the determination of whether or not a substrate surface, in lieu of written instruction from a product manufacturer, is considered porous or non-porous prior to the installation of resilient flooring materials.1.2 Although carpet tiles, carpet, wood flooring, coatings, films, paints, self-leveling and trowel-grade underlayments, primers, and other associated products are not specifically intended to be included in the category of resilient floor coverings, the procedures included in this practice may be useful for assessing the substrate water absorption for substrates to receive such materials.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 6 on Hazards.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Palladium and gold coatings are often specified for the contacts of separable electrical connectors and other devices. Electrodeposits are the form of gold that is most used on contacts, although it is also employed as inlay or clad metal and as weldments on the contact surface. The intrinsic nobility of gold and palladium alloys enables it to resist the formation of insulating oxide films that could interfere with reliable contact operation.5.2 In order for these coatings to function as intended, porosity, cracks, and other defects in the coating that expose base-metal substrates and underplates must be minimal or absent, except in those cases where it is feasible to use the contacts in structures that shield the surface from the environment or where corrosion inhibiting surface treatments for the deposit are employed. The level of porosity in the coating that may be tolerable depends on the severity of the environment to the underplate or substrate, design factors for the contact device like the force with which it is mated, circuit parameters, and the reliability of contact operation that it is necessary to maintain. Also, when present, the location of pores on the surface is important. If the pores are few in number and are outside of the zone of contact of the mating surfaces, their presence can often be tolerated.5.3 Methods for determining pores on a contact surface are most suitable if they enable their precise location and numbers to be determined. Contact surfaces are often curved or irregular in shape, and testing methods should be suitable for them. In addition, the severity of porosity-determining tests may vary from procedures capable of detecting all porosity to procedures that detect only highly porous conditions.5.4 The present test practice is capable of detecting virtually all porosity or other defects that could participate in corrosion reactions with the substrate or underplate. In addition, it can be used on contacts having complex geometry such as pin-socket contacts (although with deep recesses it is preferred that the contact structures be opened to permit reaction of the vapors with the interior significant surfaces).5.5 The relationship of porosity levels revealed by particular tests to contact behavior must be made by the user of these tests through practical experience or by other forms of testing. Thus, absence of porosity in the coating may be a requirement for some applications, while a few pores in the contact zone may be acceptable for others. The acceptable number, sizes and locations of the pore corrosion products shall be as specified on the appropriate drawing or specification.5.6 This test is considered destructive in that it reveals the presence of porosity by contaminating the surface with corrosion products and by undercutting the coating at pore sites or at the boundaries of the unplated areas. Any parts exposed to this test shall not be placed in service.5.7 The test is simple and inexpensive. The cost associated with the test is very low, using standard basic equipment found in an industrial laboratory. There are minimal waste disposal issues associated with the procedure. The test is very popular because of its very quick means of assessing the likelihood of plating quality problems, prior to the performance of accelerated environmental testing on the 1 to 2 week scale at much greater expense.1.1 This test practice covers equipment and methods for revealing the porosity of gold and palladium coatings, particularly electrodeposits and clad metals used on electrical contacts.1.2 This test practice is suitable for coatings containing gold or 75 % by mass of palladium on substrates of copper, nickel, and their alloys, which are commonly used in electrical contacts.1.3 A variety of full porosity testing methods is described in the literature.2,3 These porosity Test Methods are B735, B741, B798, B799, and B809. An ASTM Guide to the selection of porosity tests for electrodeposits and related metallic coatings is available as Guide B765.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards, see Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 Material properties determined by this test method are useful for quality control of glass-fiber reinforced concrete, ascertaining compliance with governing specifications, and research and development.1.1 This test method covers the determinations of dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass-fiber reinforced concrete.NOTE 1: This test method does not involve a determination of absolute specific gravity. Therefore, such pore space as may be present in the specimen that is not emptied during the specified drying or is not filled with water during the specified immersion is considered “impermeable” and is not differentiated from the solid portion of the specimen for the calculations, especially those for percent voids.Depending upon the pore size distribution and the pore entry radii of the specimen and on the purposes for which the test results are desired, the procedures of this method may be adequate, or they may be insufficiently rigorous. In the event that it is desired to fill more of the pores than will be filled by immersion, various techniques involving the use of vacuum treatment or increased pressure may be used. If a rigorous measure of total pore space is desired, this can only be obtained by determining absolute specific gravity by first reducing the sample to discrete particles, each of which is sufficiently small so that no impermeable space can exist within any of the particles.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method provides a means for readily determining if a ceramic is properly fired (matured). Penetration of any extent may negate the usefulness of the ceramic, or, arbitrarily, some degree of penetration may be acceptable for the use or commercial quality of the item being tested.1.1 This test method covers procedures for detecting pores, cracks, or other voids that may be present in otherwise impermeable whiteware ceramics, or as porosity in underfired ware.NOTE 1: This test method was partially derived from ANSI C29.1.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
31 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页