微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0

在线阅读 收 藏
AS 1851-2012 Routine service of fire protection systems and equipment 现行 发布日期 :  2012-12-03 实施日期 : 

定价: 1911元 / 折扣价: 1625

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

定价: 975元 / 折扣价: 829 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

This specification covers nominal-wall-thickness, seamless and welded austenitic steel tubing for general corrosion-resisting and low- or high-temperature service. All material shall be furnished in the heat-treated condition. The steel shall conform to the chemical composition requirements. Different mechanical test requirements that includes, flaring test, flange test, hardness test, and reverse flattening test are presented. Also, each tube shall be subjected to the non-destructive electric test or the hydrostatic test. Finally the hardness requirements for different grades of tubes are highlighted.1.1 This specification covers grades of nominal-wall-thickness, stainless steel tubing for general corrosion-resisting and low- or high-temperature service, as designated in Table 1.1.2 The tubing sizes and thicknesses usually furnished to this specification are 1/4 in. [6.4 mm] in inside diameter and larger and 0.020 in. [0.51 mm] in nominal wall-thickness and heavier.1.3 Mechanical property requirements do not apply to tubing smaller than 1/8 in. [3.2 mm] in inside diameter or 0.015 in. [0.38 mm] in thickness.NOTE 1: Additional testing requirements may apply for use in ASME B31.3 applications.1.4 Optional supplementary requirements are provided and, when one or more of these are desired, each shall be so stated in the order.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1 Scope 1.1 This Standard applies to complete flue-connected, oil-fired service water heaters that are provided with automatic control devices. These service water heaters may be used both for heating and for supplying of domestic hot water. They are

定价: 455元 / 折扣价: 387

在线阅读 收 藏

This specification covers killed carbon- manganese-silicon steel plates intended for welded pressure vessels in service at moderate and lower temperatures. As a steel making practice, the steel shall be killed and shall conform to specified fine austenitic grain size requirements. Plates are normally supplied in the as-rolled condition. Plates may be ordered normalized or stress relieved, or both. The steel shall conform to the required chemical compositions. The plates, as represented by the tension test specimens, shall conform to the mechanical property requirements.1.1 This specification2 covers killed carbon-manganese-silicon steel plates intended for welded pressure vessels in service at moderate and lower temperatures.1.2 The maximum thickness of plates is limited only by the capacity of the material to meet the specified mechanical property requirements.1.3 For plates produced from coil and furnished without heat treatment or with stress relieving only, the additional requirements, including additional testing requirements and the reporting of additional test results, of Specification A20/A20M apply.1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice is intended to help users, particularly power plant operators, maintain effective control over their mineral lubricating oils and lubrication monitoring program. This practice may be used to perform oil changes based on oil condition and test results rather than on the basis of service time or calendar time. It is intended to save operating and maintenance expenses.4.2 This practice is also intended to help users monitor the condition of mineral lubricating oils and guard against excessive component wear, oil degradation, or contamination, thereby minimizing the potential of catastrophic machine problems that are more likely to occur in the absence of such an oil condition monitoring program.4.3 This practice does not necessarily reference all of the current oil testing technologies and is not meant to preclude the use of alternative instrumentation or test methods that provide meaningful or trendable test data, or both. Some oil testing devices and sensors (typically used for screening oils that will be tested according to standard methods) provide trendable indicators that correlate to water, particulates, and other contaminants but do not directly measure these.4.4 This practice is intended for mineral oil products, and not for synthetic type of products, with the exception of phosphate esters fluids typically used in power plant control systems.1.1 This practice covers the requirements for the effective monitoring of mineral oil and phosphate ester fluid lubricating oils in service auxiliary (non-turbine) equipment used for power generation. Auxiliary equipment covered includes gears, hydraulic systems, diesel engines, pumps, compressors, and electrohydraulic control (EHC) systems. It includes sampling and testing schedules and recommended action steps, as well as information on how oils degrade.NOTE 1: Other types of synthetic lubricants are sometimes used but are not addressed in this practice because they represent only a small fraction of the fluids in use. Users of these fluids should consult the manufacturer to determine recommended monitoring practices.1.2 This practice does not cover the monitoring of lubricating oil for steam and gas turbines. Rather, it is intended to complement Practice D4378.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1 Scope This clause of part 1 is replaced by: This standard deals with the safety of stationary electric circulation pumps intended for use in heating systems or in service water systems, having a rated power input not exceeding 300 W, their rated vo

定价: 410元 / 折扣价: 349

在线阅读 收 藏

4.1 This practice is intended to assist the user, in particular the power-plant operations and maintenance departments, to maintain effective lubrication of all parts of the turbine and guard against the onset of problems associated with oil degradation and contamination. The values of the various test parameters mentioned in this practice are purely indicative. In fact, for proper interpretation of the results, many factors, such as type of equipment, operation workload, design of the lubricating oil circuit, and top-up level, should be taken into account.1.1 This practice covers the requirements for the effective monitoring of mineral turbine oils in service in steam and gas turbines, as individual or combined cycle turbines, used for power generation. This practice includes sampling and testing schedules to validate the condition of the lubricant through its life cycle and by ensuring required improvements to bring the present condition of the lubricant within the acceptable targets. This practice is not intended for condition monitoring of lubricants for auxiliary equipment; it is recommended that the appropriate practice be consulted (see Practice D6224).1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

6.1 The quantitative determination of remaining antioxidants for in-service industrial oils by measuring the amount of these additives that have been added to the oil as protection against oxidation. Industrial lubricants, such as turbine oils, compressor oils, gear oils, hydraulic oils, bearing lubricants and greases can be formulated with a wide variety of antioxidants types such as phenols and amines (as primary antioxidants), which are working synergistically and therefore all important to be monitored individually. For in-service oils, the LSV determines and compares the amount of original primary antioxidants remaining after oxidation have reduced its initial concentration.6.2 This guide covers procedures for primary antioxidants such as amines and phenols, as described by Test Method D6971 and D6810.6.3 LSV is not designed or intended to detect all of the antioxidant intermediates formed during the thermal and oxidative stressing of the oils, which are recognized as having some contribution to the remaining useful life of the used or in-service oil. In order to measure the overall stability of an oil (including contribution of intermediates present), and before making final judgment on the remaining useful life of the used oil (which might result in the replacement of the oil reservoir), it is advised to perform additional analytical techniques (in accordance with Practice D4378 and Practice D6224).6.4 This guide is applicable to a wide range of industrial oils, both mineral or synthetic based, which can contain rust and oxidation inhibitors, antiwear additives such as zinc dialkyl dithiophosphates on gear oils, circulating oils, transmission oils and other industrial lubricating oils.6.5 The test is also suitable for manufacturing control and specification acceptance.6.6 When a voltammetric analysis is obtained for a industrial lubricant inhibited with at least one type of antioxidant, there is an increase in the current of the produced voltammogram between 5 s to 8 s (or 0.5 V to 0.8 V applied voltage) (see Note 1) for the zinc dialkyl dithiophosphate type of antioxidant (Fig. 1), an increase in the current of the produced voltammogram between 8 s to 12 s (or 0.8 V to 1.2 V applied voltage) (Fig. 2) (see Note 1) for the aromatic amines, and increase in the current of the produced voltammogram between 13 s and 16 s (or 1.3 V to 1.6 V applied voltage) (see Note 1) for the hindered phenols or carbamates in the neutral acetone solution (Fig. 2: x-axis 1 s = 0.1 V), or both. Hindered phenol antioxidants detected by voltammetric analysis include, but are not limited to, 2,6-di-tert -butyl-4-methylphenol; 2,6-di-tert-butylphenol and 4,4’-Methylenebis(2,6-di-tert-butylphenol). Aromatic amine antioxidants detected by voltammetric analysis include, but are not limited to, phenyl alpha naphthylamines, and alkylated diphenylamines.FIG. 2 Aromatic Amine and Hindered Phenol Voltammetric Response in the Neutral Test Solution with Blank Response ZeroedNOTE 1: Voltages listed with respect to reference electrode. The voltammograms shown in Figs. 1-6 were obtained with a platinum reference electrode and a voltage scan rate of 0.1 V/s.FIG. 3 Hindered Phenol Voltammetric Response in Basic Test Solution with Blank Response ZeroedFIG. 4 Voltammetric Reading for an In-service Oil Sample Comparing Aromatic Amines (additive #1) and Hindered Phenols (additive #2) Peaks (in the Neutral Test Solution)—Standard (top line) and Sample In-Service Oil (lower line)FIG. 5 a Filming Problems Due to Oil SolubilityFIG. 5 b Filming Due to Additive Concentration (continued)FIG. 5 c Filming Problems Due to Oil Solubility (continued)FIG. 6 Shifting of Antioxidant Peaks Due to Oil Solubility6.7 For industrial lubricants containing zinc dialkyl dithiophosphate type of antioxidants, there is an increase in the current of the produced voltammogram between 5 s to 8 s (or 0.5 V to 0.8 V applied voltage) (see Note 1) by using the neutral acetone test solution (see Fig. 1). There is no corresponding ASTM International standard describing the test method procedures for measuring zinc dialkyl dithiophosphates type of antioxidants in industrial lubricants.6.8 For industrial lubricants containing only aromatic amines as antioxidants, there is an increase in the current of the produced voltammogram between 8 s to 12 s (or 0.8 V to 1.2 V applied voltage) (see Note 1) for the aromatic amines, by using the neutral acetone test solution (first peak in Fig. 2) as described in Test Method D6971.6.9 For industrial lubricants containing only hindered phenolic antioxidants, it is preferable to use a basic alcohol solution rather than the neutral acetone solutions, to achieve an increase in the current of the produced voltammogram between 3 s to 6 s (or 0.3 V to 0.6 V applied voltage) (see Note 1) in basic alcohol solution (Fig. 3: x-axis 1 s = 0.1 V) as described in Test Method D6810.1.1 This guide covers the voltammetric analysis for qualitative measurements of primary antioxidants in new or in-service type industrial lubricants detectable in concentrations as low as 0.0075 % by mass up to concentrations found in new oils by measuring the amount of current flow at a specified voltage in the produced voltammogram.1.2 This guide can be used as a resource for a condition monitoring program to track the oxidative health of a range of industrial lubricants which contain primary antioxidants. In order to avoid excessive degradation of the base-oil, these primary antioxidants play a major role to protect the lubricants against thermal-oxidative degradation. This guide can help users with interpretation and troubleshooting results obtained using linear sweep voltammetry (LSV).1.3 When used as part of oil condition monitoring practices, it is important to apply trend analysis to monitor the antioxidant depletion rate relative to a baseline sample rather than use voltammetry for an absolute measurement of the antioxidant concentration. The trending pattern provides a proactive means to identify the level of oil degradation or abnormal changes in the condition of the in-service lubricant.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers standard specification for several grades of minimum-wall-thickness, seamless and welded, carbon and alloy-steel tubes intended for use at low temperatures. The steel shall conform to the required chemical composition for carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, copper, cobalt, and molybdenum. The number of tubes in a heat-treatment lot shall be determined from the size of the tubes. The tubes shall have a hardness number that does not exceed the prescribed Rockwell and Brinell hardness values. Several grades of steel shall conform to the following tensile properties: tensile strength, yield strength, and elongation. For Grades 1, 3, 6, 7, and 9, the notch-bar impact properties of each set of three impact specimens, including specimens for the welded joint in welded pipe, shall not be less than the prescribed values. Several mechanical tests shall be conducted, namely: flattening test; flare test (seamless tubes); flange test (welded tubes); reverse flattening test; hardness test; and impact tests. Hydrostatic or nondestructive electric test shall also be performed. Materials shall be tested for impact resistance at the prescribed temperature for the respective grades. Impact temperature reduction values shall be by any amount equal to the difference between the temperature reduction corresponding to the actual material thickness and the temperature reduction corresponding to Charpy specimen width actually tested.1.1 This specification2 covers several grades of minimum-wall-thickness, seamless and welded, carbon and alloy-steel tubes intended for use at low temperatures. Some product sizes may not be available under this specification because heavier wall thicknesses have an adverse affect on low-temperature impact properties.1.2 Supplementary Requirement S1 of an optional nature is provided. This shall apply only when specified by the purchaser.NOTE 1: For tubing smaller than 1/2  in. [12.7 mm] in outside diameter, the elongation values given for strip specimens in Table 1 shall apply. Mechanical property requirements do not apply to tubing smaller than 1/8  in. [3.2 mm] in outside diameter and with a wall thickness under 0.015 in. [0.4 mm].1.3 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
226 条记录,每页 15 条,当前第 1 / 16 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页