微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This terminology defines basic terms and considerations for components of thumb-type surgical forceps. Instruments with this terminology are limited to those fabricated from stainless steel and used for surgical procedures.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

Scaffolds may be composed of purely mineral or ceramic materials, or they may be composed of a composite material with its main phase being a mineral or ceramic. Scaffolds may be porous or non-porous, mechanically rigid or compliant, and degradable or non-degradable. The scaffold may or may not have undergone a surface treatment.1.1 This guidance document covers the chemical, physical, biological, and mechanical characterization requirements for biocompatible mineral- and ceramic-based scaffolds used solely as device or to manufacture tissue-engineered medical products (TEMPs). In this guide, the pure device or the TEMPs product will be referred to as scaffold.1.2 The test methods contained herein provide guidance on the characterization of the bulk physical, chemical, mechanical, and surface properties of a scaffold construct. These properties may be important for the performance of the scaffold, especially if they affect cell behavior, adhesion, proliferation and differentiation. In addition, these properties may affect the delivery of bioactive agents, the biocompatibility and the bioactivity of the final product.1.3 This document may be used as guidance in the selection of test methods for the comprehensive characterization of a raw materials, granules, pre-shaped blocks, or an original equipment manufacture (OEM) specification. This guide may also be used to characterize the scaffold component of a finished medical product.1.4 While a variety of materials can be used to manufacture such scaffolds, the composition of the final scaffold shall contain mineral or ceramic components as its main ingredients.1.5 This guide assumes that the scaffold is homogeneous in nature. Chemical or physical inhomogeneity or mechanical anisotropy of the scaffold shall be declared in the manufacturer’s material and scaffold specification.1.6 This guide addresses neither the biocompatibility of the scaffold, nor the characterization or release profiles of any biomolecules, cells, drugs, or bioactive agents that are used in combination with the scaffold.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This guide describes the general product development criteria and analyses applicable to processing of cells, tissues, and organs used for the production of TEMPs. For the purposes of this guide, cells, tissues, and organs may be derived from any organism at any developmental stage and in any state of health. For example, this guide applies to stem, progenitor, somatic, and germline cells, as well as cells from specific tissue and organ types. This guide also applies to cells, tissues, and organs from healthy, diseased, or injured embryos to adults. Cells, tissues, and organs may be combined with a scaffold and may contain locally or systemically acting biomolecules or a drug (medicinal) product. This type of TEMP would be a “combination product.”1.1 This guide describes the processing, characterization, production, and quality assurance of cells, tissues, and organs used for Tissue Engineered Medical Products (TEMPs). It concerns aspects of processing activities for cells, tissues, and organs to be further processed. These aspects include: (1) cell, tissue, and organ processing (that is, facility, reagents, and procedures for receipt, inspection, and storage; tissue culture components, biological risk factors, and processing area), (2) donors (human and nonhuman) and screening, and (3) cell, tissue, and organ characterization and processing. 1.2 This guide does not apply to any medical products of human origin regulated by the U.S. Food and Drug Administration (FDA) under 21 CFR Parts 16 and 1270 (1) and 21 CFR Parts 207, 807, and 1271 (2). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice is useful for assessing the cytotoxic potential both when evaluating new materials or formulations for possible use in medical applications, and as part of a quality control program for established medical devices.5.2 This practice is used for assessing the cytotoxic potential of materials intended for the fabrication of inserts or implants in the orofacial region.5.3 This practice is restricted to normal non-transformed, human orofacial tissues using cells cultured in human serum factors and does not depend upon cells and serum from non-human sources.5.4 This practice incorporates procedures to monitor the quality of ingredient materials and the uniformity of the production process for formulating stock compositions.5.5 This practice may be useful to determine the effects of age and radiation, and the state of carcinogenicity on the sensitivity of HED tissues to materials and devices used for orofacial prostheses.1.1 This practice describes a procedure to assess the cytotoxic potential of materials for use in the construction of medical materials and devices using human excised donor (HED) tissues and their derived primary cells taken from the orofacial region.1.2 This practice may be used either directly to evaluate materials or as a reference against which other cytotoxicity methods may be compared.1.3 This practice is one of a series of reference methods for assessment of cytotoxic potential, employing different techniques.1.4 Assessment of cytotoxicity is one of several procedures employed in determining the biological response to a material, as recommended in Practice F748.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This classification outlines aspects of TEMPs which includes their individual components.4.2 The categories outlined in this classification are intended to list, identify, and group the areas pertinent to tissue-engineered medical products. This classification will be used by the Tissue-Engineered Medical Products subcommittees for the organization of the development of standards for the field of tissue engineering, TEMPs, and protocols for their use. The development of products from the new tissue engineering technologies necessitates creation and implementation of new standards (1).54.3 Since interactions may occur among the components used in TEMPs, new standard descriptions, test methods, and practices are needed to aid the evaluation of these interactions. The degree of overall risk for any given TEMP is reflected by the number and types of tests required to demonstrate product safety and efficacy.1.1 This classification outlines the aspects of tissue-engineered medical products that will be developed as standards. This classification excludes traditional transplantation of organs and tissues as well as transplantation of living cells alone as cellular therapies.1.2 This classification does not apply to any medical products of human origin regulated by the U.S. Food and Drug Administration under 21 CFR Parts 16 and 1270 and 21 CFR Parts 207, 807, and 1271.1.3 This standard does not purport to address specific components covered in other standards. Any safety areas associated with the medical product's use will not be addressed in this standard. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The objective of this guide is to provide guidance in the characterization of Type I collagen as a starting material for surgical implants and substrates for tissue engineered medical products (TEMPs). This guide contains a listing of physical and chemical parameters that are directly related to the function of collagen. This guide can be used as an aid in the selection and characterization of the appropriate collagen starting material for the specific use. Not all tests or parameters are applicable to all uses of collagen.4.2 The collagen covered by this guide may be used in a broad range of applications, forms, or medical products, for example (but not limited to) medical devices, tissue engineered medical products (TEMPs) or cell, drug, or DNA delivery devices for implantation. The use of collagen in a practical application should be based, among other factors, on biocompatibility and physical test data. Recommendations in this guide should not be interpreted as a guarantee of clinical success in any tissue engineered medical product or drug delivery application.4.3 The following general areas should be considered when determining if the collagen supplied satisfies requirements for use in TEMPs. These are source of collagen, chemical and physical characterization and testing, and impurities profile.4.4 The following documents or other appropriate guidances from appropriate regulatory bodies relating to the production, regulation, and regulatory approval of TEMPs products should be considered when determining if the collagen supplied satisfies requirements for use in TEMPs:FDA CFR:21 CFR 3: Product Jurisdiction:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=321 CFR 58: Good Laboratory Practice for Nonclinical Laboratory Studies:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=58 FDA/CDRH CFR and Guidances:21 CFR Part 803: Medical Device Reporting:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=80321 CFR 812: Investigational Device Exemptions:    http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=81221 CFR 814: Premarket Approval of Medical Devices :   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=81421 CFR 820: Quality System Regulation:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=820Design Control Guidance for Medical Device Manufacturers:   http://www.fda.gov/cdrh/comp/designgd.pdfPreproduction Quality Assurance Planning Recommendations for Medical Device Manufacturers (FDA 90-4236):   http://www.fda.gov/cdrh/manual/appende.htmlThe Review and Inspection of Premarket Approval Applications under the Bioresearch Monitoring Program—Draft Guidance for Industry and FDA Staff:   http://www.fda.gov/cdrh/comp/guidance/1602.pdf FDA/CDRH Search Engines:CDRH Guidance Search Engine:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfggp/search.cfmCDRH Premarket Approval (PMA) Search Engine:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfmCDRH 510(k) Search Engine:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfmCDRH Recognized STANDARDS Search Engine :   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm FDA/CBER CFR and Guidances:21 CFR 312: Investigational New Drug Application :   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=31221 CFR 314: Applications for FDA Approval to Market a New Drug:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=3121 CFR 610: General Biological Products Standards:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=61021 CFR 1271: Human Cells, Tissues and Cellular and Tissue-Based Products:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=1271Cellular & Gene Therapy Guidances and Other Publications:   http://www.fda.gov/cber/genetherapy/gtpubs.htmHuman Tissue Guidances and Other Publications:   http://www.fda.gov/cber/tissue/docs.htmCBER Product Approval Information:   http://www.fda.gov/cber/efoi/approve.htm21 CFR 600, 601 BLA Regulations:   http://www.access.gpo.gov/nara/cfr/waisidx_07/21cfrv7_07.html21 CFR 210, 211 GMP Regulations:   http://www.access.gpo.gov/nara/cfr/waisidx_07/21cfr210_07.html1.1 This guide for characterizing collagen-containing biomaterials is intended to provide characteristics, properties, and test methods for use by producers, manufacturers, and researchers to more clearly identify the specific collagen materials used. With greater than 20 types of collagen and the different properties of each, a single document would be cumbersome. This guide will focus on the characterization of Type I collagen, which is the most abundant collagen in mammals, especially in skin and bone. Collagen isolated from these sources may contain other types of collagen, for example, Type III and Type V. This guide does not provide specific parameters for any collagen product or mix of products or the acceptability of those products for the intended use. The collagen may be from any source including, but not limited to, animal or cadaveric sources, human cell culture, or recombinant sources. The biological, immunological, or toxicological properties of the collagen may vary, depending on the source material. The properties of the collagen prepared from each of the above sources must be thoroughly investigated, as the changes in the collagen properties as a function of source materials is not thoroughly understood. This guide is intended to focus on purified Type I collagen as a starting material for surgical implants and substrates for tissue engineered medical products (TEMPs); some methods may not be applicable for gelatin or tissue implants. This guide may serve as a template for characterization of other types of collagen.1.2 The biological response to collagen in soft tissue has been well documented by a history of clinical use (1, 2)2 and laboratory studies (3-6). Biocompatibility and appropriateness of use for a specific application(s) is the responsibility of the product manufacturer.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 Warning—Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law.1.5 The following precautionary caveat pertains only to the test method portion, Section 5, of this guide. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This guide provides definitions and a classification for CTPs, as well as definitions related to skin tissue, skin wounds and ulcers, wound healing physiology, wound covers, and related medical and surgical procedures. This guide is not intended to prescribe or limit the clinical uses of these products.4.2 One objective of the current guide is to include the wide range of CTPs for which there is a rationale for benefit beyond that achievable with conventional wound coverings. Whether an individual CTP is capable of promoting wound healing must be determined by adequate evidence and is beyond the scope of this standard. Given that some of the materials used in dressings and skin substitutes (defined in Guide F2311) are the same as those used in CTPs, there has been confusion as to how to classify these products.4.3 This guide is distinguished from Guide F2311, which defines terminology and provides classification by clinical use for products that can be substituted for tissue grafts of human or animal tissue in medical and surgical therapies of skin lesions. In contrast, this guide defines terminology for description of CTPs for skin wounds; CTPs are defined primarily by their composition. Neither guide establishes a correspondence between device structure and clinical function.1.1 This guide defines terminology for description of cellular and/or tissue-based products (CTPs) for skin wounds. CTPs are TEMPs (tissue-engineered medical products) that are primarily defined by their composition and comprise viable and/or nonviable human or animal cells, viable and/or nonviable tissues, and may include extracellular matrix components. CTPs may additionally include synthetic components.1.2 This guide also describes categories and terminology for CTPs based on their composition. This systematic categorization is not intended to be prescriptive for product labeling, and it describes only the most salient characteristics of these products; the actual biological and clinical functions can depend on characteristics not recognized in the categorization and it should be understood that two products that can be described identically by the categorization should not be presumed to be identical or have the same clinical utility.1.3 This guide defines CTP-related terminology in the context of skin wounds. However, this guide does not provide a correspondence between the CTP composition and its clinical use(s). More than one product may be suitable for each clinical use, and one product may have more than one clinical use.1.4 This guide does not purport to address safety concerns with the use of CTPs. It is the responsibility of the user of this standard to establish appropriate safety and health practices involved in the development of said products in accordance with applicable regulatory guidance documents and in implementing this guide to evaluate the cellular and/or tissue-based products for wounds.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is a guideline for a screening test of candidate materials or assessment of local tissue response to absorbable medical devices which are expected to undergo complete absorption within three years.5.2 This practice is similar to those for studies on candidate materials or medical devices that are not absorbable, such as those specified in Practices F763, F981, and F1408; however, analysis of the host response must take into account the effect of degradation and degradation products on the inflammatory response at the local tissue site and on subsequent healing of the implantation site, as well as the potential for adverse distal tissue effects.5.3 For testing of absorbable medical devices, the test article for implantation should be in the final finished form as for intended use, including packaging and sterilization (if applicable). Configurations specific to the animal study may be needed. The test article’s surface-area-to-body mass or mass-to-body mass ratios within the animal model should be established by calculating based on surface-area-to-body mass or mass-to-body mass ratios in humans during the device’s intended clinical use. Worst-case clinical dose should be considered in the study design. For implantation studies incorporating evaluation of both local tissue responses and systemic toxicity, exaggerated material surface area or mass-to-body mass ratios (for example, a 2X to 10X safety factor to assess implant safety for regulatory submissions) compared to clinical use (for example, largest device size, maximum number of devices) should be considered, unless otherwise justified. For example, implantation of exaggerated doses may not be feasible in the selected animal model. For some devices, additional animal group(s) for exaggerated conditions should be considered if dose response information is needed. Additionally, for some devices, exaggerated dose at a specific implantation site can also be used to evaluate local tissue responses.5.4 Materials that are designed for use in devices with in situ polymerization shall be introduced in a manner such that in situ polymerization occurs. Additional testing of individual precursor components or partially polymerized materials may be needed in some cases (for example, if testing of the final implant indicates an adverse response or incomplete polymerization).1.1 This practice provides experimental protocols for biological assays of tissue reactions to absorbable biomaterials for implant applications. This practice applies only to absorbable materials with projected clinical applications in which the materials will reside in bone or soft tissue longer than 30 days and less than three years. Other standards with designated implantation times are available to address shorter time periods. Careful consideration should be given to the appropriateness of this practice for slowly degrading materials that will remain for longer than three years. It is anticipated that the tissue response to degrading biomaterials will be different from the response to nonabsorbable materials. In many cases, a chronic inflammatory response may be observed during the degradation phase, but the local histology should return to normal after absorption; therefore, the minimal tissue response usually equated with biocompatibility may require long implantations.1.2 The time period for implant absorption can depend on variables of chemical composition, implant size, implant location, and animal models. Therefore, the selected time points for assessing tissue effects may be selected based on the rate of absorption.1.3 These protocols assess the effects of the material on the animal tissue in which it is implanted. They do not fully assess systemic toxicity, carcinogenicity, reproductive and development toxicity, or mutagenicity of the material. Other standards are available to address these issues.1.4 To maximize use of the animals in the study protocol, some aspects of systemic toxicity, including effects of degradation products on different organs and tissues downstream of or surrounding the target site, can be addressed with this practice.1.5 Because animal models are not identical to human biology, this practice cannot account for all potential biological hazards, for example the effect of the oligosaccharide a-Gal (Gala 1,3-Galb1-4GlcNAc-R), known as the “a-Gal” epitope present in xenogeneic materials on humans. See ISO 22442.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Injuries to tendons or ligaments are frequently treated by surgery to repair the damaged tissues and facilitate the healing process. The potential of TEMPs to enhance the outcomes (including function, pain, anatomy) of the surgical repair has been recognized.Examples of tissues that when injured may be appropriate for repair using TEMPs: rotator cuff with a partial or full tear; Achilles tendon; Achilles tendon after harvesting for anterior cruciate ligament repair; patella tendon; patella tendon after harvesting for anterior cruciate ligament repair; quadriceps tendon; posterior cruciate ligament; medial collateral ligaments; lateral collateral ligaments; flexor tendons.TEMPs may be used with the intent to improve the surgical outcome of tendon or ligament repair by (a) assuming some of the mechanical load experienced at the repair site to stabilize the surgical repair, (b) improving the natural biological healing process, or (c) a combination of these mechanisms.TEMPs should improve clinical outcome. This may be accomplished by reducing or eliminating pain, returning function, shortening the recovery time following surgery, facilitating early mobility, improving return of strength, improving mobility, or other clinically relevant parameters.The mechanism used by TEMPs to improve surgical repair should be understood and this conclusion should be supported by experimental results and should be supportive of the primary function of the TEMP.TEMPs with the primary function of mechanical reinforcement may also have a secondary, biological function.When the product is used to improve the body’s natural biological repair process of tendons or ligaments, the product should allow cell attachment, migration, infiltration, extracellular matrix deposition and organization, formation of tendon or ligament repair tissue, integration with adjacent tendon, ligament or bone, tendon-bone attachment, or more than one of these actions.When the TEMP is used to provide a mechanical support of the surgical repair of a tendon or ligament, the product may provide enhanced mechanical properties of the repaired construct immediately after the surgery. Ideally, TEMPs would have mechanical properties similar to the uninjured native tissue being repaired. After surgery, the TEMP should limit the amount of tendon/ligament separation from the bone, or separation of the fractured ends of the tendon or ligament, or reduce the number of patients that have these as outcomes of the surgery. The TEMP may allow functionality to return to the repaired tendon or ligament in a shorter time than without the use of the product.1.1 This guide is intended as a resource for individuals and organizations involved in the development, production, and delivery of tissue engineered medical products (TEMPs) intended to provide a mechanical (functional) reinforcement of the surgical repair of tendons and ligaments.1.2 Surgical repair can include procedures that repair tendon to tendon, tendon to bone, tendon to muscle, ligament to ligament, and ligament to bone. In the context of this guide, a tendon is a fibrous cord or band that connects a muscle to a bone or other structure and consists of both dense collagenous fibers and rows of elongated tendon cells. In contrast, a ligament is a band or sheet of fibrous tissue connecting two or more bones, or cartilagenous structures.1.3 Examples of TEMPs for use in reinforcement of tendon or ligament repairs include extracellular matrices (including allograft tissue, xenograft tissue, and tissue engineered extracellular matrix), polymeric matrices, membranes, or combinations of two or more of these, with or without cells and/or molecular mediators, where the function is to reinforce the surgical repair of tendon to tendon, tendon to bone, tendon to muscle, ligament to ligament, or ligament to bone.1.4 The products may be rapidly degrading, slowly degrading, or non-degrading.1.5 The guide is not intended to apply to TEMPs that have a primary function to induce a biological repair through cell or molecular action, although biologic activity may be a feature of the TEMPs. Examples of products or product concepts that are not included are (a) growth factors or cytokines applied to a biologic or synthetic scaffold, and (b) platelet-enriched plasma applied to or within a biologic or polymeric scaffold, where the primary function of the product is biologic.1.6 The guide is not intended to apply to TEMPs that have a primary function to induce a chemical repair. An example of a product or product concept that would not be included would be a polymeric matrix containing reagents that glue collagenous tissues together.1.7 The guide is not intended to apply to TEMPs that are designed to be used to achieve primary surgical repair of injured tendons and ligaments.1.8 The guide is not intended to apply to TEMPs that are designed to replace tendons or ligaments.1.9 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The test methods contained herein guide characterization of the structural, physical, chemical, mechanical, and biological properties of a fiber-based construct. Such properties may be important for the success of a TEMP, especially if they affect cell retention; activity and organization; tensile strength; the delivery of bioactive agents; or the biocompatibility and bioactivity of the construct.5.2 Tests described herein may be used for quality control during manufacturing or to assess how the product may perform its intended clinical function.5.3 Plans for product development, product characterization, and the regulatory pathway should be discussed with the appropriate regulatory body.1.1 This guide is a resource for the characterization of fiber-based constructs intended for use in a tissue-engineered medical product (TEMP). There are existing standards that broadly cover scaffolds in a more generalized fashion (Guides F2150, F2450, F2900, F2902, ISO 21560). This guide focuses specifically on fiber-based constructs.1.2 Fiber-based constructs may be fabricated by many different methods including, but not limited to the following: electrospinning, forcespinning, meltspinning, pneumatospinning, blowspinning, melt-electrowriting, melt extrusion, wet extrusion, fused deposition, liquid crystal deposition, electrochemical alignment, drawing, spinning, knitting, weaving, braiding, powder bed fusion (laser sintering), vat photopolymerization (stereolithography), binder jetting, directed energy deposition, self-assembly (for example, fibrillogenesis), and hybrid approaches. This document is intended to address fibers made by any of these methods, although electrospun fibers are addressed in greater detail in some sections.1.3 This guide will focus on constructs made of fibers wherein the average fiber diameter is within the range of approximately 100 nm to 100 µm.1.4 For the purposes of this standard, a “fiber-based construct” is defined as a construct composed of slender, elongated filaments.1.5 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 The purpose of this guide is to provide guidance on characterization of the properties of porcine fibrinogen as a starting material for surgical implants and as a matrix for tissue-engineered medical products (TEMPs). This guide contains a set of physical and chemical parameters directly related to the function of porcine fibrinogen. This guide can be used to help select and characterize appropriate fibrinogen starting materials for specific purposes. Not all tests or parameters are suitable for all uses of fibrinogen.5.2 Fibrinogen described in this guide may be used in various types of medical products including, but not limited to, implants, tissue-engineered medical products (TEMPs), and cell, drug, or DNA delivery vectors. The recommendations in this guide shall not be construed to guarantee the successful clinical application of any tissue-engineered medical product.5.3 In determining whether fibrinogen meets the requirements for use in a TEMP, the relevant regulatory authorities or other appropriate guidelines relating to the production, regulation, and approval of TEMP products shall be taken into account (Guide E1298, Practice F981, Practice F1983).1.1 This guide covers the evaluation of porcine fibrinogen suitable for use in biomedical or pharmaceutical applications including, but not limited to, tissue-engineered medical products (TEMPs).1.2 This guide addresses key parameters relevant for functionality, characterization, and purity of porcine fibrinogen.1.3 As with any material, some characteristics of porcine fibrinogen may be altered by processing techniques, such as electrospinning (1)2 and sterilization, required for the production of a specific formulation or device. Therefore, properties of fabricated forms of this protein should be evaluated using test methods that are appropriate to ensure safety and efficacy and are not addressed in this guide.1.4 The primary focus of this document is fibrinogen derived from porcine blood, which is similar to human fibrinogen. The biggest advantage that pigs have over other species (such as cattle, sheep, goats, elk, and deer) is that they are less likely to transmit transmissible spongiform encephalitis (TSE) (ISO 22442-1 Annex D; WHO Guidelines, 2003; WHO Guidelines, 2006; WHO Guidelines, 2010). The document may also discuss fibrinogen from other sources when useful information is available. Fibrin is also discussed in some sections.1.5 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This document provides guidance for users who wish to obtain quantifiable data from images of tissue scaffolds manufactured from polymers that include both high water content gels and woven textiles.4.2 Information derived from tissue scaffold images can be used to optimize the structural characteristics of the matrix for a particular application, to develop better manufacturing procedures or to provide a measure of quality assurance and product traceability. Fig. 1 provides a summary of the key stages of image capture and analysis.FIG. 1 Key Stages in Image Capture, Storage, and Analysis4.3 There is a synergy between the analysis of pores in tissue scaffolds and that of particles that is reflected in standards cited and in the analysis described in Section 9. Guide E1919 provides a compendium of standards for particle analysis that includes measurement techniques, data analytical and sampling methodologies.1.1 This guide covers the factors that need to be considered in obtaining and interpreting images of tissue scaffolds including technique selection, instrument resolution and image quality, quantification and sample preparation.1.2 The information in this guide is intended to be applicable to porous polymer-based tissue scaffolds, including naturally derived materials such as collagen. However, some materials (both synthetic and natural) may require unique or varied sample preparation methods that are not specifically covered in this guide.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Autologous PRP and platelet gels are utilized in a wide range of orthopedic, sports medicine, regenerative medicine, and surgical applications (3-5). PRP and platelet gels are layered, sprayed, injected, molded, or packed, alone or in combination with graft material or TEMPs, into a variety of anatomical sites, tissues, and voids (3, 6). These platelet concentrates can provide an assortment of bioactive molecules, cells, and physical properties that are potentially attractive for promoting healing and other cell therapy applications (7). Unfortunately, the term “platelet-rich plasma” or “PRP,” which is ubiquitous in early and contemporary medical literature related to a variety of platelet concentrates, only unambiguously denotes one critical parameter of a platelet suspension—increased platelet concentration. Without further context, this common description of PRP offers no information about other important physical and cellular aspects of platelet concentrations. As scientific and clinical understanding of PRP and other cellular therapies increases standardization of nomenclature and terminology is critical for defining key properties, standardizing processing parameters and techniques, and developing repeatable assays for quality assurance and scientific evaluation (5, 8-13). This guide outlines basic guidelines to describe key properties of unique PRP and platelet gel formulations in a standardized fashion. Reliable, standardized descriptions can provide valuable context to PRP end users, such as clinicians seeking a PRP or platelet gel with certain biological attributes or scientific investigators seeking to duplicate a published formulation or to correlate a given PRP or platelet gel feature to other biological properties or outcomes.1.1 This guide defines terminology and identifies key fundamental properties of autologous platelet-rich plasma (PRP) and PRP-derived platelet gels intended to be used for tissue engineered medical products (TEMPS) or for cell therapy applications. This guide provides a common nomenclature and basis for describing notable properties and processing parameters for PRP and platelet gels that may have utility for manufacturers, researchers, and clinicians. Further discussion is also provided on certain aspects of PRP processing techniques, characterization, and quality assurance and how those considerations may impact key properties. The PRP characteristics outlined in this guide were selected based n a review of contemporary scientific and clinical literature but do not necessarily represent a comprehensive inventory; other significant unidentified properties may exist or be revealed by future scientific evaluation. This guide provides general recommendations for how to identify and cite relevant characteristics of PRP, based on broad utility; however, users of this standard should consult referenced documents for further information on the relative import or significance of any particular PRP characteristic in a particular context.1.2 The scope of this guide is confined to aspects of PRP and platelet gels derived and processed from autologous human peripheral blood. Platelet-rich plasma, as defined within the scope of this standard, may include leukocytes.1.3 The scope of this document is limited to guidance for PRP and platelet gels that are intended to be used for TEMPS or for cell therapy applications. Processing of PRP, other platelet concentrates or other blood components for direct intravenous transfusion is outside the scope of this guide. Apheresis platelets and other platelet concentrates utilized in transfusion medicine are outside the scope of this document. Production of PRP or platelet gels for diagnostic or research applications unrelated to PRP intended for TEMPS or cell therapy is also outside the scope of this guide. Fibrin gels devoid of platelets are also excluded from discussion within this document.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The need for standards regarding TEMPs has also prompted a need for definitions. This terminology sets forth definitions of the most commonly used terms and specifies the relationship among the sciences and components applied in tissue engineering to develop TEMPs. Use of these terms and an understanding of these relationships will unify the ASTM TEMPs standards with a common language such that the users of these standards can understand and interpret the standards more precisely. Terms specific to a TEMP standard will also be defined within the respective standard as appropriate.3.2 Defining Terms—Terms are defined with a broad scope to encompass these new products known as TEMPs. For instance, the definition for somatic cell therapy as stated in the “Guidance for Human Somatic Cell Therapy and Gene Therapy” (1)3 is recognized in this terminology. However, for the purposes of TEMPs that contain cells, we have added the definition of “cell” which is much broader and not limited to the use of living cells.3.3 Clinical Effects of TEMPs—The users of this terminology should note that terms used regarding the clinical effects of TEMPs, for instance, “modify or modification” of the patient's condition, may also be interpreted to “enhance, augment, transform, alter, improve, or supplement.” Similarly, “repair” may also serve to mean “restore.”3.4 The diagram in Fig. 1 shows the relationships of components of TEMPs and of the fields of science (for example, technologies and principles) used in tissue engineering to create TEMPs. Certain TEMPs may be tissue engineered or produced in vitro by using specific components and sciences to create an off-the-shelf TEMP for the users. Other TEMPs may by design require the users to place the components inside the patient, (that is, in vivo) to rely upon the patient's regenerative potential to achieve the product's primary intended purpose. The expectation of a TEMP used for therapeutic clinical applications is to have a therapeutic effect, specifically to repair, modify or regenerate the recipient's cells, tissues, and organs or their structure and function. Such a TEMP may be used for human and non-human applications. In other applications, a TEMP may be used in diagnostic clinical applications, or both, to achieve an investigative outcome of the function of the cells, tissues, and organs.FIG. 1 Relationships of the Fields of Tissue Engineering to Tissue Engineered Medical Products1.1 This terminology defines basic terms and presents the relationships of the scientific fields related to Tissue Engineered Medical Products (TEMPs). Committee F04 has defined these terms for the specific purpose of unifying the language used in standards for TEMPs.1.2 The terms and relationships defined here are limited to TEMPs. They do not apply to any medical products of human origin regulated by the U.S. Food and Drug Administration under 21 CFR Parts 16 and 1270 and 21 CFR Parts 207, 807, and 1271.1.3 The terms and nomenclature presented in this standard are for the specific purposes of unifying the language used in TEMP standards and are not intended for labeling of regulated medical products.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The main use is to immobilize, support, or suspend living cells or tissue in a matrix. The use of an encapsulation/immobilization system may protect cells or tissues from immune rejection. When immobilizing biological material in alginate gels, there are numerous parameters that must be controlled. This guide contains a list of these parameters and describes the methods and types of testing necessary to properly characterize, assess, and ensure consistency in the performance of an encapsulation system using alginate. This guide only covers single gelled beads, coated or not, and not double capsules or other constructs.4.2 The alginate gelation technology covered by this guide may allow the formulation of cells and tissues into biomedical devices for use as tissue engineered medical products or drug delivery devices. These products may be appropriate for implantation based on supporting biocompatibility and physical test data. Recommendations in this guide should not be interpreted as a guarantee of clinical success in any tissue engineered medical product or drug delivery application.1.1 This guide discusses information relevant to the immobilization or encapsulation of living cells or tissue in alginate gels. Immobilized or encapsulated cells are suitable for use in biomedical and pharmaceutical applications, or both, including, but not limited to, Tissue Engineered Medical Products (TEMPs).1.2 This guide addresses key parameters relevant for successful immobilization and encapsulation in alginate gels.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
39 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页