微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 592元 / 折扣价: 504 加购物车

在线阅读 收 藏

5.1 Many petroleum products and some non-petroleum products are used as lubricants in the equipment, and the correct operation of the equipment depends upon the appropriate viscosity of the lubricant being used. Additionally, the viscosity of many petroleum fuels is important for the estimation of optimum storage, handling, and operational conditions. Thus, the accurate determination of viscosity is essential to many product specifications.5.2 The viscosity of used oils is a commonly determined parameter in the oil industry to assess the effect of engine wear on the lube oils used, as well as the degradation of the engine parts during operation.5.3 The Houillon viscometer tube method offers automated determination of kinematic viscosity. Typically a sample volume of less than 1 mL is required for the analysis.1.1 This test method covers the measurement of the kinematic viscosity of transparent and opaque liquids; such as base oils, formulated oils, diesel oil, biodiesel, biodiesel blends, residual fuel oils, marine fuels, and used lubricating oils using a Houillon viscometer in automated mode.1.2 The range of kinematic viscosity capable of being measured by this test method is from 2 mm2/s to 2500 mm2/s (see Fig. 1). The range is dependent on the tube constant utilized. The temperature range that the apparatus is capable of achieving is between 20 °C and 150 °C, inclusive. However, the precision has only been determined for the viscosity range; 2 mm2/s to 478 mm2/s at 40 °C for base oils, formulated oils, diesel oil, biodiesel, and biodiesel blends; 3 mm2/s to 106 mm2/s at 100 °C for base oils and formulated oils; 25 mm2/s to 150 mm2/s at 40 °C and 5 mm2/s to 16 mm2/s at 100 °C for used lubricating oils; 25 mm2/s to 2500 mm2/s at 50 °C and 6 mm2/s to 110 mm2/s at 100 °C for residual fuels. As indicated for the materials listed in the precision section.FIG. 1 Houillon Viscometer Typical Viscosity Range of Tube ConstantsNOTE 1: Viscosity range of a Houillon tube is based on most practical flow time of 30 s to 200 s.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Many petroleum products, and some non-petroleum materials, are used as lubricants and the correct operation of the equipment depends upon the appropriate viscosity of the liquid being used. In addition, the viscosity of many petroleum fuels is important for the estimation of optimum storage, handling, and operational conditions. Thus, the accurate determination of viscosity is essential to many product specifications.5.2 Density is a fundamental physical property that can be used in conjunction with other properties to characterize both the light and heavy fractions of petroleum and petroleum products.5.3 Determination of the density or relative density of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperature of 15 °C.1.1 This test method covers and specifies a procedure for the concurrent measurement of both the dynamic viscosity, η, and the density, ρ, of liquid petroleum products and crude oils, both transparent and opaque. The kinematic viscosity, ν, can be obtained by dividing the dynamic viscosity, η, by the density, ρ, obtained at the same test temperature.1.2 The result obtained from this test method is dependent upon the behavior of the sample and is intended for application to liquids for which primarily the shear stress and shear rate are proportional (Newtonian flow behavior).1.3 The precision has only been determined for those materials, viscosity ranges, density ranges, and temperatures as indicated in Section 15 on Precision and Bias. The test method can be applied to a wider range of materials, viscosity, density, and temperature. For materials not listed in Section 15 on Precision and Bias, the precision and bias may not be applicable.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Viscosity values at the shear rate and temperature of this test method have been indicated to be related to the viscosity providing hydrodynamic lubrication in automotive and heavy duty engines in severe service.75.2 The viscosities of engine oils under such high temperatures and shear rates are also related to their effects on fuel efficiency and the importance of high shear rate, high temperature viscosity has been addressed in a number of publications and presentations.71.1 This test method covers the laboratory determination of the viscosity of engine oils at 150 °C and 1.0·106 s−1 using a viscometer having a slightly tapered rotor and stator called the Tapered Bearing Simulator (TBS) Viscometer.21.2 The Newtonian calibration oils used to establish this test method range from approximately 1.2 mPa·s to 7.7 mPa·s at 150 °C. The precision has only been determined for the viscosity range 1.47 mPa·s to 5.09 mPa·s at 150 °C for the materials listed in the precision section.1.3 The non-Newtonian reference oil used to establish the shear rate of 1.0·106 s−1 for this test method has a viscosity closely held to 3.55 mPa·s at 150 °C by using the absolute viscometry of the TBS.1.4 Manual, semi-automated, and fully automated TBS viscometers were used in developing the precision statement for this test method.1.5 Application to petroleum products such as base oils and formulated engine oils was determined in preparing the viscometric information for this test method.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 This test method uses the milliPascal·second (mPa·s) as the unit of viscosity. This unit is equivalent to the centipoise (cP).1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is useful for characterizing the flow behavior of asphalt emulsion residues and non-Newtonian asphalts. However, since non-Newtonian viscosity values depend on the level of shearing stress, its duration, and the shear history of the material, a non-Newtonian viscosity is not a unique material property. Instead, it is a parameter which is characteristic of the fluid-viscometer system under the conditions of the measurement procedure. Therefore, comparisons of non-Newtonian material behavior should only be made using apparent viscosities determined in similar viscometers under similar conditions of shearing stress and stress history. Procedures of sample preparation are especially important for repeatability or reproducibility of test results.NOTE 3: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capacity, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method describes procedures primarily designed to determine the apparent viscosities of residues obtained by distilling asphalt emulsions according to Test Method D6997. It is also recommended for use on non-Newtonian asphalts at any temperature within the capability of the apparatus. This test method is useful in characterizing rheological properties of non-Newtonian asphalts as a function of shear rate under the conditions of the test method. This test is run in straight open-end tube viscometers, normally at 60 °C, but is suitable for use at other temperatures. It is applicable over the range from 5 to 50 000 Pa·s.NOTE 1: The precision for this test method is based on determinations made at 60 °C.1.2 The values stated in SI units are to be regarded as the standard, except in reference to viscometer constant or calibration factor (K).1.3 Warning— Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury or its vapor may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheets (MSDS) for details and the EPA’s website (www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury, mercury-containing products, or both, in your state may be prohibited by state law.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Viscosity—Viscosity values determined by this test method depend on molecular structure, molecular weight, and non-rubber constituents that may be present. Since rubber behaves as a non-Newtonian fluid, no simple relationship exists between the molecular weight and the viscosity. Therefore, caution must be exercised in interpreting viscosity values of rubber, particularly in cases where molecular weight is very high. For example, as the molecular weight increases, the viscosity values for IIR polymers (butyl rubbers) reach an upper limit of about 80, at 100°C (212°F) using a large rotor at a rotation speed of 2 r/min, and may then decrease to considerably lower values. For these higher molecular weight rubbers, better correlation between viscosity values and molecular weight is obtained if the test temperature is increased.5.2 Stress Relaxation—The stress relaxation behavior of rubber is a combination of both an elastic and a viscous response. Viscosity and stress relaxation behavior do not depend on such factors as molecular weight and non-rubber constituents in the same way. Thus both of these tests are important and complement each other. A slow rate of relaxation indicates a higher elastic component in the overall response, while a rapid rate of relaxation indicates a higher viscous component. The rate of stress relaxation has been found to correlate with rubber structure characteristics such as molecular weight distribution, chain branching, and gel content.5.3 Pre-Vulcanization Characteristics—The onset of vulcanization can be detected with the Mooney viscometer as evidenced by an increase in viscosity. Therefore, this test method can be used to measure incipient cure (scorch) time and the rate of cure during very early stages of vulcanization. This test method cannot be used to study complete vulcanization because the continuous rotation of the disk will result in slippage when the specimen reaches a stiff consistency.1.1 These test methods cover procedures for measuring a property called Mooney viscosity. Mooney viscosity is defined as the shearing torque resisting rotation of a cylindrical metal disk (or rotor) embedded in rubber within a cylindrical cavity. The dimensions of the shearing disk viscometer, test temperatures, and procedures for determining Mooney viscosity are defined in these test methods.1.2 When disk rotation is abruptly stopped, the torque or stress on the rotor decreases at some rate depending on the rubber being tested and the temperature of the test. This is called “stress relaxation” and these test methods describe a test method for measuring this relaxation.NOTE 1: Viscosity as used in these test methods is not a true viscosity and should be interpreted to mean Mooney viscosity, a measure of shearing torque averaged over a range of shearing rates. Stress relaxation is also a function of the test configuration and for these test methods the results are unique to the Mooney viscometer.1.3 When compounded rubber is placed in the Mooney viscometer at a temperature at which vulcanization may occur, the vulcanization reaction produces an increase in torque. These test methods include procedures for measuring the initial rate of rubber vulcanization.1.4 ISO 289 Parts 1 and 2 also describes the determination of Mooney viscosity and pre-vulcanization characteristics. In addition to a few insignificant differences there are major technical differences between ISO 289 and this test method in that ISO 289 does not provide for sample preparation on a mill, while this test method allows milling sample preparation in some cases prior to running a Mooney viscosity test. This can result in different viscosity values for some rubbers.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is used to measure the apparent viscosity of asphalts at handling, mixing, or application temperatures.5.2 Some asphalts may exhibit non-Newtonian behavior under the conditions of this test method, or at temperatures within the range of this test method. Since non-Newtonian viscosity values are not absolute properties, but reflect the behavior of the fluid within the particular measurement system, it should be recognized that measurements made by this test method may not always predict field performance under the conditions of use.5.3 Comparisons between non-Newtonian viscosity values should be made only for measurements made with similar conditions of temperature, shear rate, and shear history.1.1 This test method outlines a procedure for measuring the apparent viscosity of asphalt from 40 to 260 °C [100 to 500 °F] using a rotational viscometer and a temperature-controlled thermal chamber for maintaining the test temperature.1.2 The values stated in either SI units or cgs and inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See 10.6 for specific precautionary information.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the viscosity of asphalt cements by means of a cone-plate viscometer. It is applicable to materials having viscosities in the range from 10 to 10 P (10 to 10 Pa[dot]s) and is therefore suitable for use at temperatures where viscosity is in the range indicated. The shear rate may vary between approximately 10 to 10 s and the method is suitable for determination on materials having either Newtonian or non-Newtonian flow properties. 1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 These test methods are applicable for measuring the rheological properties of varnishes and paints. In particular, the low to moderate shear rate measurements provide information related to sag resistance, leveling, etc.1.1 These test methods cover the measurement of the viscosity of Newtonian and non-Newtonian liquids. These test methods are applicable to liquids having viscosities in the range from 5 × 10−4 Pa·s to 103 Pa·s (0.5 cP to 106 cP). The shear rate range is dependent upon the needle used and viscosity of the liquid and may vary from 10−4 s−1 to 103 s−1. With an extension bar and applied weight, a shear rate of 104 s–1 may be achieved.1.2 The yield stress of liquids having this property may also be determined.1.3 These test methods consist of determining liquid viscosities of Newtonian and non-Newtonian fluids (clear or opaque) by measuring the steady-state (constant) or terminal velocities of cylindrical needles as they fall through the test liquid under the influence of gravity. Yield stresses of non-Newtonian liquids may be measured using the same procedure.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Viscosity is an important property of fluid lubricants. The viscosity of all fluids varies with temperature. Many common petroleum lubricants are non-Newtonian: their viscosity also varies with shear rate. The usefulness of the viscosity of lubricants is greatest when the viscosity is measured at or near the conditions of shear rate and temperature that the lubricants will experience in service.5.2 The conditions of shear rate and temperature of this test method are thought to be representative of those in the bearing of automotive engines in severe service.5.3 Many equipment manufacturers and lubricant specifications require a minimum high-temperature high-shear viscosity at 150 °C and 106 s−1. The shear rate in capillary viscometers varies across the radius of the capillary. The apparent shear rate at the wall for this test method is increased to compensate for the variable shear rate.35.4 This test was evaluated in an ASTM cooperative program.61.1 This test method covers the laboratory determination of high-temperature high-shear (HTHS) viscosity of engine oils at a temperature of 150 °C using a multicell capillary viscometer containing pressure, temperature, and timing instrumentation. The shear rate for this test method corresponds to an apparent shear rate at the wall of 1.4 million reciprocal seconds (1.4 × 106 s−1).3 This shear rate has been found to decrease the discrepancy between this test method and other high-temperature high-shear test methods3 (Test Methods D4683 and D4741) used for engine oil specifications. Viscosities are determined directly from calibrations that have been established with Newtonian oils with nominal viscosities from 1.4 mPa·s to 5.0 mPa·s at 150 °C. The precision has only been determined for the viscosity range 1.45 mPa·s and 5.05 mPa·s at 150 °C for the materials listed in the precision section.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 The centiPoise (cP) is a non-SI metric unit of viscosity that is numerically equal to the milliPascal-second (mPa·s).1.2.2 Pounds per square inch (psi) is a non-SI unit of pressure that is approximately equal to 6.895 kPa. These units are provided for information only in 6.1.1, 7.3, 9.1.2.1, and the tables.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to measure the apparent viscosity of thermoplastic pavement marking at elevated temperatures. Elevated temperature viscosities of thermoplastic pavement marking may be related to the properties of coatings, adhesives, and composite thermoplastics. This method is helpful in determining the flow properties which can be used in determining processability when applied to the road surface.5.2 Thermoplastic pavement markings may be applied to the road surface in several different ways. Typical methods of application are screed extrude, ribbon extrude, thin film spray, and standard spray. Proper application depends on the viscosity of the thermoplastic material at application temperatures for the method being used. Thin-line applied thermoplastic pavement marking, for example, requires a relatively lower viscosity. Screed extrude applied thermoplastic requires a higher viscosity.5.3 Materials of the type described in this procedure may be non-Newtonian, and as such, the apparent viscosity will be a function of shear rate under the conditions of test. Although the viscometer described in this test method operates under conditions of relatively low shear rate, differences in shear effect can exist depending upon the spindle and rotational speed conditions selected for the test program. Comparisons between non-Newtonian viscosity values should be made only for measurements made with similar viscometers under conditions of equivalent shear. For this method, “torpedo” spindles are recommended. Spindles considered torpedo spindles are ~1-in. long and come in many diameters with a 45° conical bottom. A diameter that is half the diameter of the thimbles used is recommended. If large glass beads are used in the pavement marking formulation, a smaller diameter spindle may be needed so the beads do not cause an impedance of the spindle due to a jamming between the inside wall of the thimble and the spindle.1.1 This test method covers the sample preparation and testing procedure needed to determine the apparent viscosity of a thermoplastic pavement marking formulation at elevated temperatures to the specimen.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are customary units and are provided as a courtesy to the user.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The viscosity at 60 °C [140 °F] characterizes flow behavior and may be used for specification requirements for cutback asphalt and asphalt binders.NOTE 3: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers procedures for the determination of the apparent viscosity of asphalt binder by vacuum capillary viscometers at 60 °C [140 °F]. It is applicable to materials having viscosities in the range from 0.0036 to over 20 000 Pa·s [0.036 to over 200 000 P].NOTE 1: This test method is suitable for use at other temperatures, but the precision is based on determinations on asphalt binders at 60 °C [140 °F].NOTE 2: Modified asphalt binders or asphalt binders that have been conditioned or recovered are typically non-Newtonian under the conditions of this test. The apparent viscosity for non-Newtonian asphalt binders varies with shear rate. When the flow is non-Newtonian in a capillary tube, the shear rate determined using this test method may be invalid. The presence of non-Newtonian behavior for the test conditions of this test can be verified by measuring the viscosity with viscometers having different-sized capillary tubes or with different pressure heads. The defined precision limits in Section 11 may not be applicable to non-Newtonian asphalt binders. Test Method D4957 may be a more applicable method for testing non-Newtonian asphalts.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 Warning—Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) or Safety Data Sheet (SDS) for details and the EPA’s website—http://www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury, mercury-containing products, or both, in your state may be prohibited by state law.1.4 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
38 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页