
【国外标准】 Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This standard guide applies to concrete that is still in place with a defined geometry and known, documented history.4.2 It is not intended for use on concrete that has already been rubbelized where it is difficult to measure the radiation levels and not easy to remove surface contamination to reduce radiation levels after concrete has been rubbelized.4.3 This standard guide applies to surface or volumetrically contaminated concrete, where the depth of contamination can be measured or estimated based on the history of the concrete.4.4 This standard guide does not apply to the reinforcement bar (rebar) found in concrete. Although most concrete contains rebar, it is generally removed before the concrete is dispositioned. In addition, rebar may be activated, and is covered under procedures for reuse of scrap metal.4.5 General unit-dose and unit-cost data to support the calculations is provided in the appendices of this standard guide. However, if site-specific data is available, it should be used instead of the general information provided here.4.6 This standard guide helps determine estimated doses to the public during disposal of concrete and to future residents of disposal areas. It does not include dose to radiation workers already involved in a radiation control program. It is assumed that the dose to radiation workers is already tracked and kept within acceptable levels through a radiation control program. The cost and dose to radiation workers could be added in to find an overall cost and dose for each option.1.1 This standard guide defines the process for developing a strategy for dispositioning concrete from nuclear facility decommissioning. It outlines a 10-step method to evaluate disposal options for radioactively contaminated concrete. One of the steps is to complete a detailed analysis of the cost and dose to nonradiation workers (the public); the methodology and supporting data to perform this analysis are detailed in the appendices. The resulting data can be used to balance dose and cost and select the best disposal option. These data, which establish a technical basis to apply to release the concrete, can be used in several ways: (1) to show that the release meets existing release criteria, (2) to establish a basis to request release of the concrete on a case-by-case basis, (3) to develop a basis for establishing release criteria where none exists.1.2 This standard guide is based on the “Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Sites,” (1)2 from which the analysis methodology and supporting data are taken.1.3 Guide E1760 provides a general process for release of materials containing residual amounts of radioactivity. In addition, Guide E1278 provides a general process for analyzing radioactive pathways. This standard guide is intended for use in conjunction with Guides E1760 and E1278, and provides a more detailed approach for the release of concrete.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2216-02(2020)
标准名称:
Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning
英文名称:
Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E1014-12(2021) Standard Guide for Measurement of Outdoor A-Weighted Sound Levels
- ASTM E1016-07(2020) Standard Guide for Literature Describing Properties of Electrostatic Electron Spectrometers
- ASTM E1019-18 Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques
- ASTM E1021-15(2019) Standard Test Method for Spectral Responsivity Measurements of Photovoltaic Devices
- ASTM E103-17 Standard Practice for Rapid Indentation Hardness Testing of Metallic Materials
- ASTM E1030/E1030M-21 Standard Practice for Radiographic Examination of Metallic Castings
- ASTM E1035-18(2023) Standard Practice for Determining Neutron Exposures for Nuclear Reactor Vessel Support Structures
- ASTM E1036-15(2019) Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells
- ASTM E1038-10(2019) Standard Test Method for Determining Resistance of Photovoltaic Modules to Hail by Impact with Propelled Ice Balls
- ASTM E104-20a Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions
- ASTM E1044-96(2024) Standard Specification for Glass Serological Pipets (General Purpose and Kahn)
- ASTM E1046-85(2021) Standard Specification for Glass Westergren Tube, Disposable
- ASTM E1048-88(2021) Standard Specification for Color-Coding Pipets or Containers Coated With Anticoagulants
- ASTM E1049-85(2023) Standard Practices for Cycle Counting in Fatigue Analysis
- ASTM E1052-20 Standard Practice to Assess the Activity of Microbicides against Viruses in Suspension