
【国外标准】 Standard Test Method for Determining Compressive Resistance of Shipping Containers, Components, and Unit Loads
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Compressive resistance is one of the properties used to evaluate the ability of shipping containers, components, and unit loads to successfully survive the compressive forces they are subjected to during storage and distribution (see Note 1).NOTE 1: For constant load test refer to Test Method D4577.4.2 Compressive resistance may be determined with either fixed- or swiveled-platen-type testing machines. However, a fixed-head compression machine is required to perform edge-to-edge and corner-to-corner orientations on test specimens (see Note 2). Also, unit loads are generally tested only in the top-to-bottom orientation.NOTE 2: Fixed-platen machines generally cause corrugated box specimens to fail at their strongest point, while swivel-platen machines cause corrugated box specimens to fail at their weakest point.5 The swiveled platen is allowed to move to the weakest point of the container.1.1 This test method covers compression tests on shipping containers (for example, boxes and drums) or components, or both. Shipping containers may be tested with or without contents. The procedure may be used for measuring the ability of the container to resist external compressive loads applied to its faces, to diagonally opposite edges, or to corners. This test method covers testing of multiple containers or unit loads, in addition to individual shipping containers, components, materials, or combination thereof.1.2 The test method of applying load may be used to compare the characteristics of a given design of container with a standard, or to compare the characteristics of containers differing in construction.1.3 This test method is related to TAPPI T 804. This test method fulfills the requirements of International Organization for Standardization (ISO) Test Method 12048. The ISO standards may not meet the requirements for this test method.1.4 The test may be conducted with the container loaded with contents and interior packaging in cases where the contents share the load.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D642-20
标准名称:
Standard Test Method for Determining Compressive Resistance of Shipping Containers, Components, and Unit Loads
英文名称:
Standard Test Method for Determining Compressive Resistance of Shipping Containers, Components, and Unit Loads标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 60695.11.20:2001/Amdt 1:2004 Fire hazard testing Test flames - 500 W flame test methods
- AS/NZS 60745.2.20:2003 Hand-held motor-operated electric tools - Safety - Particular requirements for band saws
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes