
【国外标准】 Standard Test Method for Apparent Viscosity of Engine Oils and Base Stocks Between –10 °C and –35 °C Using Cold-Cranking Simulator
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The CCS apparent viscosity of automotive engine oils correlates with low temperature engine cranking. CCS apparent viscosity is not suitable for predicting low temperature flow to the engine oil pump and oil distribution system. Engine cranking data were measured by the Coordinating Research Council (CRC) L-495 test with reference oils that had viscosities between 600 mPa·s and 8400 mPa·s (cP) at –17.8 °C and between 2000 mPa·s and 20 000 mPa·s (cP) at –28.9 °C. The detailed relationship between this engine cranking data and CCS apparent viscosities is in Appendixes X1 and X2 of the 1967 T edition of Test Method D26026 and CRC Report 409.5 Because the CRC L-49 test is much less precise and standardized than the CCS procedures, CCS apparent viscosity need not accurately predict the engine cranking behavior of an oil in a specific engine. However, the correlation of CCS apparent viscosity with average CRC L-49 engine cranking results is satisfactory.5.2 The correlation between CCS and apparent viscosity and engine cranking was confirmed at temperatures between –1 °C and –40 °C by work on 17 commercial engine oils (SAE grades 5W, 10W, 15W, and 20W). Both synthetic and mineral oil based products were evaluated. See ASTM STP 621.75.3 A correlation was established in a low temperature engine performance study between light duty engine startability and CCS measured apparent viscosity. This study used ten 1990s engines at temperatures ranging from –5 °C down to –40 °C with six commercial engine oils (SAE 0W, 5W, 10W, 15W, 20W, and 25W).85.4 The measurement of the cranking viscosity of base stocks is typically done to determine their suitability for use in engine oil formulations. A significant number of the calibration oils for this method are base stocks that could be used in engine oil formulations.1.1 This test method covers the laboratory determination of apparent viscosity of engine oils and base stocks by cold cranking simulator (CCS) at temperatures between –10 °C and –35 °C at shear stresses of approximately 50 000 Pa to 100 000 Pa and shear rates of approximately 105 to 104 s–1 for viscosities of approximately 900 mPa·s to 25 000 mPa·s. The range of an instrument is dependent on the instrument model and software version installed. Apparent Cranking Viscosity results by this method are related to engine-cranking characteristics of engine oils.1.2 A special procedure is provided for measurement of highly viscoelastic oils in manual instruments. See Appendix X2.1.3 Procedures are provided for both manual and automated determination of the apparent viscosity of engine oils using the cold-cranking simulator.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D5293-20
标准名称:
Standard Test Method for Apparent Viscosity of Engine Oils and Base Stocks Between –10 °C and –35 °C Using Cold-Cranking Simulator
英文名称:
Standard Test Method for Apparent Viscosity of Engine Oils and Base Stocks Between –10 °C and –35 °C Using Cold-Cranking Simulator标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D5292-99(2014) Standard Test Method for Aromatic Carbon Contents of Hydrocarbon Oils by High Resolution Nuclear Magnetic Resonance Spectroscopy (Withdrawn 2018)
- 下一篇: ASTM D5295/D5295M-18 Standard Guide for Preparation of Concrete Surfaces for Adhered (Bonded) Membrane Waterproofing Systems
- 推荐标准
- ASTM D4399-05(2023) Standard Test Method for Measuring Electrical Conductivity of Electrocoat Baths
- ASTM D4404-18 Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry
- ASTM D4414-95(2020) Standard Practice for Measurement of Wet Film Thickness by Notch Gages
- ASTM D4416-09(2023) Standard Specification for Acrylic Acid
- ASTM D4417-21 Standard Test Methods for Field Measurement of Surface Profile of Blast Cleaned Steel
- ASTM D4418-22 Standard Practice for Receipt, Storage, and Handling of Fuels for Gas Turbines
- ASTM D4422-19 Standard Test Method for Ash in Analysis of Petroleum Coke
- ASTM D4426-01(2021) Standard Test Method for Determination of Percent Nonvolatile Content of Liquid Phenolic Resins Used for Wood Laminating
- ASTM D4437/D4437M-16(2023) Standard Practice for Nondestructive Testing (NDT) for Determining the Integrity of Seams Used in Joining Flexible Polymeric Sheet Geomembranes
- ASTM D4439-23b Standard Terminology for Geosynthetics
- ASTM D444-88(2020) Standard Test Methods for Chemical Analysis of Zinc Yellow Pigment (Zinc Chromate Yellow)
- ASTM D4440-23 Standard Test Method for Plastics: Dynamic Mechanical Properties Melt Rheology
- ASTM D4441-20 Standard Specification for Aqueous Dispersions of Polytetrafluoroethylene
- ASTM D4444-13(2018) Standard Test Method for Laboratory Standardization and Calibration of Hand-Held Moisture Meters
- ASTM D4445-23 Standard Test Method for Fungicides for Controlling Sapstain and Mold on Unseasoned Lumber (Laboratory Method)