
【国外标准】 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Measurements of bending proof strength, offset yield strength in bending, and modulus of elasticity in bending should be made for materials whose principal stressing mode is bending. For many materials, the tensile and compressive moduli are somewhat different. Since the modulus of elasticity in bending is a combination of the tensile and compressive moduli, it is often different from each of them.4.2 Precise measurements of the modulus of elasticity in bending offset yield strength in bending, and bending proof strength require due regard for numerous variables that can affect their determination. These include (1) material characteristics such as specimen orientation with respect to the rolling direction, grain size, residual stresses, previous strain history, dimensions and specimen preparation, orientation of deformed grains relative to the direction of the normal stress; and (2) test conditions, such as temperature, temperature variations, condition of the test equipment, and adherence to the test procedure.4.3 Fundamental Assumptions: 4.3.1 The test section of the specimen is subjected to uniform bending moment, which produces a uniform strain at the outer fiber throughout the gauge length of the specimen (applies to Test Method C only).4.3.2 The neutral axis is located at the centerline of the thickness of the test specimen.4.3.3 Transverse cross sections of the beam remain plane and normal to the longitudinal fiber of the beam during bending.4.3.4 The effect of shear stresses is negligible.1.1 This standard describes three test methods2 for determining the modulus of elasticity in bending, the bending proof strength, and the offset yield strength in bending of metallic strips or sheets intended for the use in flat springs:1.1.1 Test Method A—a cantilever beam test,1.1.2 Test Method B—a three-point beam test (that is, a beam resting on two supports and centrally loaded), and1.1.3 Test Method C—a four-point beam test (that is, a beam resting on two supports and loaded at two points equally spaced from each support).1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E855-21
标准名称:
Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
英文名称:
Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM E854-19 Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance
- 下一篇: ASTM E856-83(2004) Standard Definitions of Terms and Abbreviations Relating to Physical and Chemical Characteristics of Refuse Derived Fuel (Withdrawn 2004)
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation