
【国外标准】 Standard Test Method for Liquid Penetration Resistance of Protective Clothing or Protective Ensembles Under a Shower Spray While on a Manikin
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method evaluates the ability of the construction and configuration of protective clothing or protective ensembles to resist liquid penetration. In most cases, the conditions used in this test method will not represent actual end-use conditions.5.2 Two different spray configurations are used for exposing the protective clothing or protective ensemble on a manikin.5.2.1 Procedure A involves five shower nozzles, with one nozzle directly above the clothed manikin and two nozzles each to upper and lower sides of the manikin that are all positioned in the same vertical plane. This spray configuration is intended to provide a full exposure of the entire protective clothing or protective ensemble system.5.2.2 Procedure B involves three shower nozzles that are positioned at different heights on a vertical line that is parallel to the manikin with the locations and direction of each nozzle set with respect to targets on the manikin. This spray configuration is intended to provide a direct assessment of garment features such as the front closure.5.3 The selected duration of the test is not intended to simulate user exposure to splashes of liquid substances but rather to provide sufficient time for enough liquid to penetrate to make visual detection easier. The default liquid exposure time for Procedure A is 20 min. The default liquid exposure time for Procedure B is 10 min.5.3.1 It is permissible to specify shorter test durations. It is recommended that the duration of exposure be the same in each manikin orientation.5.3.2 The choice of different test duration is partly based on the number of layers in the specimen being tested, some of which serve to absorb the surfactant-treated test liquid and result in attenuating the severity of the liquid challenge to the specimen.5.4 A nontoxic, non-foaming surfactant is added to water for this test method to simulate liquids of lower surface tensions. Liquids of specific interest can be simulated by treating water to achieve an equivalent surface tension.5.5 For protective clothing with water-repellent surfaces, the lower surface tension liquid will aid in the evaluation of the construction and configuration of the garment because it is less likely to be repelled and more likely to wet the protective clothing. This is especially useful for reusable garments whose water-repellent surface interferes with the evaluation of their construction and configuration when new, but is diminished after wearing and washing.5.6 Fluorescent or colored dyes are permitted to be added to the water to enhance detection of liquid penetration into the protective clothing or protective ensemble.5.7 This test method can be used by both manufacturers and end users to assess liquid penetration resistance. Manufacturers can use this test method to evaluate quality of construction and effectiveness of clothing and ensemble configurations.5.8 The clothing or ensemble is sized to fit the manikin. It is important that the clothing be selected to fit the manikin well since detection of liquid penetration requires as much contact as possible between the clothing or ensemble and the inner liquid-absorptive garment.5.9 Results on a mismatched size of clothing or ensemble shall not be used to generalize about a particular construction or configuration. Manikin fit potentially affects liquid penetration resistance determinations.5.10 There are no known restrictions to the types of protective clothing or protective ensembles that can be evaluated with this test method.5.11 In some cases protective clothing or protective ensembles that show no liquid penetration during this test method will still fail to protect wearers against specific liquids due to the material degradation, penetration, or permeation or the effects associated with the vapors of liquid chemicals.5.12 In some cases protective clothing or protective ensembles that show no liquid penetration during this test method will fail to protect wearers in specific circumstances as, for example, deluge or immersion.1.1 This test method measures the ability of protective clothing or protective ensembles to resist liquid penetration in the form of a shower spray with surfactant-treated water.1.2 This test method measures the liquid penetration resistance of the construction and configuration of the overall protective clothing or protective ensemble, but especially of seams, closures, and interfaces with other components such as gloves, boots, hoods, and respiratory protective equipment. It is intended that this test method be used to assess the liquid penetration resistance of protective clothing and protective ensembles as received from the manufacturer and worn in accordance with their instructions.1.3 Resistance of materials used in protective clothing to permeation or penetration can be determined in accordance with Test Method F739 (or Test Method F1383 or F1407) and Test Method F903, respectively. Alternatively, resistance of materials used in protective clothing to penetration by synthetic blood or liquids containing virus can be determined in accordance with Test Methods F1670/F1670M and F1671/F1671M.1.4 The integrity of vapor protective ensembles is measured by its ability to maintain positive internal pressure with Test Method F1052.1.5 The values in SI units or in other units shall be regarded separately as standard. The values stated in each system must be used independently of the other, without combining values in any way.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1359/F1359M-22
标准名称:
Standard Test Method for Liquid Penetration Resistance of Protective Clothing or Protective Ensembles Under a Shower Spray While on a Manikin
英文名称:
Standard Test Method for Liquid Penetration Resistance of Protective Clothing or Protective Ensembles Under a Shower Spray While on a Manikin标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM F1358/F1358M-20 Standard Test Method for Effects of Flame Impingement on Materials Used in Protective Clothing Not Designated Primarily for Flame Resistance
- 下一篇: ASTM F136-13(2021)e1 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)
- 推荐标准
- AS 3730.22-1993 Guide to the properties of paints for buildings Concrete and masonry sealer - Solvent-borne - Interior/exterior
- AS 7240.22-2008 Fire detection and alarm systems Smoke-detection equipment for ducts (ISO 7240-22:2007, MOD)
- AS/NZS 1462.22:1997 Methods of test for plastics pipes and fittings Method for the determination of pipe stiffness
- AS/NZS 2341.22:1996 (R2013) Methods of testing bitumen and related roadmaking products Determination of particle charge
- AS/NZS 4266.22:1996 Reconstituted wood-based panels - Methods of test Determination of porosity of laminated surface
- AS/NZS 60745.2.22:2011/Amdt 1:2012 Hand-held motor-operated electric tools Safety - Particular requirements for cut-off machines (IEC 60745-2-22 Ed 1, MOD)
- AS/NZS CISPR 22:2004 Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
- AS/NZS IEC 60670.22:2012 Boxes and enclosures for electrical accessories for household and similar fixed electrical installations Particular requirements for connecting boxes and enclosures
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members