
【国外标准】 Standard Practice for Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) for Eddy Current (EC) Test Methods
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Personnel that are responsible for the creation, transfer, and storage of eddy current NDE test results will use this standard. This practice defines a set of information modules that, along with Practice E2339 and the DICOM standard, provide a standard means to organize eddy current test parameters and results. The eddy current examination results may be displayed or analyzed on any device that conforms to the standard. Personnel wishing to view any eddy current examination data stored according to Practice E2339 may use this document to help them decode and display the data contained in the DICONDE compliant inspection record.1.1 This practice covers the interoperability of eddy current imaging and data acquisition equipment by specifying the image data transfer and archival storage in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of NEMA PS3 / ISO 12052, an international standard for image data acquisition, review, storage, and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitions, information modules, and a data dictionary that are specific to eddy current test methods.1.2 This practice has been developed to overcome the issues that arise when analyzing or archiving data from eddy current test equipment using proprietary data transfer and storage methods. As digital technologies evolve, data must remain decipherable through the use of open, industry-wide methods for data transfer and archival storage. This practice defines a method where all the eddy current technique parameters and inspection data are communicated and stored in a standard manner regardless of changes in digital technology.1.3 This practice does not specify:1.3.1 A testing or validation procedure to assess an implementation's conformance to the standard,1.3.2 The implementation details of any features of the standard on a device claiming conformance, or1.3.3 The overall set of features and functions to be expected from a system implemented by integrating a group of devices each claiming DICONDE conformance.1.4 Units—Although this practice contains no values that require units, it does describe methods to store and communicate data that do require units to be properly interpreted. The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2934-23
标准名称:
Standard Practice for Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) for Eddy Current (EC) Test Methods
英文名称:
Standard Practice for Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) for Eddy Current (EC) Test Methods标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E1160-13(2021) Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems
- ASTM E1162-11(2019) Standard Practice for Reporting Sputter Depth Profile Data in Secondary Ion Mass Spectrometry (SIMS)
- ASTM E1164-23 Standard Practice for Obtaining Spectrometric Data for Object-Color Evaluation
- ASTM E1173-23 Standard Practice for Evaluation of Preoperative, Precatheterization, or Preinjection Skin Preparations
- ASTM E1174-21 Standard Test Method for Evaluation of the Effectiveness of Healthcare Personnel Handwash Formulations
- ASTM E1179-13(2019) Standard Specification for Sound Sources Used for Testing Open Office Components and Systems
- ASTM E1180-08(2021) Standard Practice for Preparing Sulfur Prints for Macrostructural Evaluation
- ASTM E1198-19 Standard Practice for Sampling Zooplankton with Pumps
- ASTM E1199-19 Standard Practice for Sampling Zooplankton with a Clarke-Bumpus Plankton Sampler
- ASTM E1208-21 Standard Practice for Fluorescent Liquid Penetrant Testing Using the Lipophilic Post-Emulsification Process
- ASTM E1211/E1211M-17 Standard Practice for Leak Detection and Location Using Surface-Mounted Acoustic Emission Sensors
- ASTM E1213-14(2022) Standard Practice for Minimum Resolvable Temperature Difference for Thermal Imaging Systems
- ASTM E1218-21 Standard Guide for Conducting Static Toxicity Tests with Microalgae
- ASTM E1219-21 Standard Practice for Fluorescent Liquid Penetrant Testing Using the Solvent-Removable Process
- ASTM E122-17(2022) Standard Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process