
【国外标准】 Standard Test Method for Calculated Flash Point from Simulated Distillation Analysis of Distillate Fuels
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The flash point temperature is one measure of the tendency of the test specimen to form a flammable mixture with air under controlled laboratory conditions. It is only one of a number of properties that must be considered in assessing the overall flammability hazard of a material.4.2 Flash point is used in shipping and safety regulations to define flammable and combustible materials. Consult the particular regulation involved for precise definitions of these classifications.4.3 Flash point can indicate the possible presence of highly volatile and flammable materials in a relatively non-volatile or non-flammable material.4.4 In cases where Test Method D2887 data are available, that is, for determination of boiling range distribution or calculation of other physical properties, this test method provides a calculation method for flash point without performing an additional analysis. Table 1 shows the ranges for the IBP, 5 %, and 10 % results for each equation.4.5 In the case where the flash point of a fuel has been initially established, the calculated flash point is useful as a flash point check on subsequent samples of that fuel, provided its source and mode of manufacture remain unchanged.1.1 This test method covers the calculated flash point formula, which represents a means for directly estimating the flash point temperature of distillate fuels from Test Method D2887 data. The value computed from the equation is termed the “calculated flash point.” The calculated flash point formula is applicable to diesel fuel samples based on a correlation to Test Method D93 over the range from 47 °C to 99 °C, and to jet fuel samples based on a correlation to Test Method D56 and Test Method D3828 over the range from 35 °C to 67 °C.1.2 The calculated flash point formula is valid for diesel and jet fuels with an IBP between 90 °C and 162 °C (194 °F and 324 °F), Test Method D2887 5 % recovery temperature between 136 °C and 207 °C (277 °F and 405 °F), and Test Method D2887 10 % recovery temperature between 142 °C and 222 °C (288 °F and 432 °F). For each flash point test method (Test Method D56, Test Method D93, and Test Method D3828) a separate equation has been established. See 4.4 for a detailed overview of the simulated distillation IBP, 5 %, and 10 % ranges per equation.1.3 A calculated diagnostic parameter, not exceeding a given threshold value, is a prerequisite for acceptance of the calculated flash point.1.4 The diagnostic parameter MSPEX (Mean Summed Prediction Error) checks the sample compliance, based on reconstruction of TIBP, T5 %, and T10 % of the sample, via a calculation procedure. A value for MSPEX not exceeding the threshold level of 1.9 °C is a prerequisite for accepting the calculated flash point, CFP.NOTE 1: It is important to note that calculated flash point results, at this time, are not recognized by regulatory organizations in verifying conformance to applicable regulations.NOTE 2: The calculated flash point derived from simulated distillation data depends upon the accuracy of determination of the IBP temperature and the 5 % and 10 % recovery temperatures.NOTE 3: If the user's specification requires a defined flash point test method other than this test method, neither this test method nor any other test method should be substituted for the prescribed test method without obtaining comparative data and an agreement from the specifier.1.5 The values stated in SI units are to be regarded as the standard.1.5.1 Exception—The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7215-22
标准名称:
Standard Test Method for Calculated Flash Point from Simulated Distillation Analysis of Distillate Fuels
英文名称:
Standard Test Method for Calculated Flash Point from Simulated Distillation Analysis of Distillate Fuels标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS 7240.22-2008 Fire detection and alarm systems Smoke-detection equipment for ducts (ISO 7240-22:2007, MOD)
- AS/NZS 1462.22:1997 Methods of test for plastics pipes and fittings Method for the determination of pipe stiffness
- AS/NZS 2341.22:1996 (R2013) Methods of testing bitumen and related roadmaking products Determination of particle charge
- AS/NZS 4266.22:1996 Reconstituted wood-based panels - Methods of test Determination of porosity of laminated surface
- AS/NZS 60745.2.22:2011/Amdt 1:2012 Hand-held motor-operated electric tools Safety - Particular requirements for cut-off machines (IEC 60745-2-22 Ed 1, MOD)
- AS/NZS CISPR 22:2004 Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
- AS/NZS IEC 60670.22:2012 Boxes and enclosures for electrical accessories for household and similar fixed electrical installations Particular requirements for connecting boxes and enclosures
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications