
【国外标准】 Standard Test Method for Free Cyanide and Aquatic Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Cyanide and hydrogen cyanide are highly toxic. Regulations have been established to require the monitoring of cyanide in industrial and domestic wastes and surface waters.45.2 It is useful to determine the aquatic free cyanide to establish an index of toxicity when a wastewater is introduced into the natural environment at a given pH and temperature.5.3 This test method is applicable for natural water, saline waters, and wastewater effluent.5.4 Free cyanide measured using this test method is applicable for implementation of the International Cyanide Code Guidance in accordance with Guide D7728.1.1 This test method is used to establish the concentration of free cyanide in an aqueous wastewater, effluent and in-stream free cyanide concentrations after mixing treated water with receiving water. The test conditions of this test method are used to measure free cyanide (HCN and CN–) and cyanide bound in the metal-cyanide complexes that are easily dissociated into free cyanide ions at the pH of 6. Free cyanide is determined at pH 6 at room temperature. The aquatic free cyanide can be determined by matching the pH to the water in the receiving environment in the range of pH 6 to 8. The extent of HCN formation is less dependent on temperature than the pH; however, the temperature can be regulated if deemed necessary for aquatic free cyanide to further simulate the actual aquatic environment.1.2 The free cyanide test method is based on the same instrumentation and technology that is described in Test Method D6888, but employs milder conditions (pH 6–8 buffer versus HCl or H2SO4 in the reagent stream), and does not utilize ligand displacement reagents.1.3 The aquatic free cyanide measured by this procedure should be similar to actual levels of HCN in the original aquatic environment. This in turn may give a reliable index of toxicity to aquatic organisms.1.4 This procedure is applicable over a range of approximately 5 to 500 μg/L (parts per billion) free cyanide. Sample dilution may increase cyanide recoveries depending on the cyanide speciation; therefore, it is not recommended to dilute samples. Higher concentrations can be analyzed by increasing the range of calibration standards or with a lower injection volume. In accordance with Guide E1763 and Practice D6512 the lower scope limit was determined to be 9 μg/L for chlorinated gold leaching barren effluent water and the IQE10 % is 12 µg/L in the gold processing detoxified reverse osmosis permeate waste water sample matrix.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This test method is not recommended for samples that contain reduced sulfur compounds such as sulfides.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 8.6 and Section 9.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7237-18
标准名称:
Standard Test Method for Free Cyanide and Aquatic Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection
英文名称:
Standard Test Method for Free Cyanide and Aquatic Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7979-20 Standard Test Method for Determination of Per- and Polyfluoroalkyl Substances in Water, Sludge, Influent, Effluent, and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)
- ASTM D7981-20 Standard Practice for Compaction of Prismatic Asphalt Specimens by Means of the Shear Box Compactor
- ASTM D7986-17a Standard Practice for Preparing Specimens of Hydraulic Erosion Control Products for Index Property Testing
- ASTM D7989-21 Standard Practice for Demonstrating Equivalent In-Plane Lateral Seismic Performance to Wood-Frame Shear Walls Sheathed with Wood Structural Panels
- ASTM D7990-21 Standard Test Method for Using Reflectance Spectra to Produce an Index of Temperature Rise in Polymeric Siding
- ASTM D7991-22 Standard Test Method for Determining Aerobic Biodegradation of Plastics Buried in Sandy Marine Sediment under Controlled Laboratory Conditions
- ASTM D7992/D7992M-23 Standard Practice for Elevated Temperature and Moisture Conditioning of Pultruded Fiber Reinforced Polymer (FRP) Composites Used in Structural Designs
- ASTM D7995-19 Standard Test Method for Total Water in Liquid Butane by Liquefied Gas Sampler and Coulometric Karl Fischer Titration
- ASTM D7999-15(2019) Standard Classification for Rubber Products in Natural Gas Pipeline Applications
- ASTM D8001-16e1 Standard Test Method for Determination of Total Nitrogen, Total Kjeldahl Nitrogen by Calculation, and Total Phosphorus in Water, Wastewater by Ion Chromatography
- ASTM D8006-16 Standard Guide for Sampling and Analysis of Residential and Commercial Water Supply Wells in Areas of Exploration and Production (E&P) Operations
- ASTM D8009-22 Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils, Condensates, and Liquid Petroleum Products
- ASTM D801-02(2022) Standard Test Methods for Sampling and Testing Dipentene
- ASTM D8010-18 Standard Test Method for Determination of Water Soluble Alkali Content in Coal
- ASTM D8011-19 Standard Specification for Natural Gasoline as a Blendstock in Ethanol Fuel Blends or as a Denaturant for Fuel Ethanol