
【国外标准】 Standard Guide for Active Fixation Durability of Endovascular Prostheses
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Once implanted, active fixation systems are subjected to cyclic loading that can be caused by blood flow, musculoskeletal motion, and other sources. The focus of this document is on axial loading caused by hemodynamics. However, depending on the device design other loading modes could influence AFC or attachment mechanism durability (e.g., radial dilatation could lead to longitudinal foreshortening and axial loading on an active fixation system). Damage to AFCs and/or attachment mechanisms may not necessarily lead to device malfunction, but could cause embolization of portions of the device, device migration, endoleaks, or other patient complications (1-4).4 Therefore, durability testing of AFCs and attachment mechanisms is important to ensure that these components are capable of maintaining structural integrity for a defined lifetime.5.1.1 A test method developed following this standard guide can be used to determine the durability of AFCs and/or attachment mechanisms under the desired loading which can be used to assess conformance to product specifications, consensus standards, and guidance documents as well as to support regulatory submissions, quality control, and manufacturing.5.2 This guide provides examples and recommendations so that users can develop an appropriate active fixation durability test for their device design that mechanically challenges either the AFC, the attachment mechanism, or both simultaneously. It should be recognized that both AFCs and attachment mechanisms need to be evaluated to fully characterize active fixation system durability for design verification testing. While testing of the entire active fixation system may typically be preferable, this guide recognizes that there might be situations where this is not practical or desired and allows for independent testing of AFCs and attachment mechanisms. This guide does not contain an exhaustive list of test methods for active fixation durability and methods not included herein may be acceptable for evaluating active fixation durability. Furthermore, this guide does not include information on how to handle all patient complexities such as calcium deposits or weakened aortic tissue. For assistance regarding super-physiological testing, the user is referred to ASTM F3211.5.2.1 The success of an active fixation durability test method depends on the ability of the test apparatus to consistently induce the desired loading (force and/or displacement) to the test specimen at the applied test frequency for the entire duration of the test.5.3 For most devices, active fixation durability testing will need to be complemented by other types of durability testing such as pulsatile, axial, bending, or torsional. ASTM F2477 addresses pulsatile durability testing, ASTM F2942 addresses axial, bending, and torsional durability testing, and ISO 25539-1, in part, addresses general in vitro testing and durability testing of endovascular prostheses.1.1 This guide addresses how to conduct in vitro durability testing on active fixation components (AFCs) and attachment mechanisms of endovascular prostheses. It does not address the durability of fixation systems that reside solely within the vessel lumen to resist device migration (e.g, radial force and friction, adhesives, or geometric fit).1.2 This guide was developed to address active fixation durability for aortic stent grafts. It is not intended to address fixation durability for other endovascular prostheses such as inferior vena cava filters, transcatheter heart valves, barbed venous stents, ancillary fixation devices (e.g, staples or adhesives), or cardiac devices (e.g., left atrial appendage device or mitral repair device). However, some of the techniques and guidance within may be applicable to the in vitro testing of those other devices.1.3 This guide does not directly apply to implants with absorbable AFCs although many aspects of this standard are applicable to those products.1.4 This guide does not provide the in vivo physiologic loading conditions for endovascular prostheses. It is the responsibility of the user to determine the loading or deformation conditions for their particular device and indication. Typically, an axial loading (force or displacement) mode caused by hemodynamics is used, although other modes are possible and should be considered.1.5 This guide does not recommend any specific test method or apparatus for evaluating active fixation durability. It is recognized that there are multiple valid ways to conduct active fixation durability testing and as such this guide provides general recommendations and topics to consider so that users can successfully develop a test plan for their device.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F3374-19
标准名称:
Standard Guide for Active Fixation Durability of Endovascular Prostheses
英文名称:
Standard Guide for Active Fixation Durability of Endovascular Prostheses标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 60745.2.19:2011 Hand-held motor-operated electric tools - Safety Particular requirements for jointers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium