
【国外标准】 Standard Practice for Damage Prevention of Bearings, and Bearing Components Through Proper Handling Techniques
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This practice covers bearings and bearing components of all material compositions and grades. It may be used to develop a process for adequately handling bearings.4.2 Unless the proper conditions of an adequate facility, equipment, and trained personnel are available, it may be better not to inspect the bearings in-house. The danger of contaminating and damaging the bearings may be much greater than the possibility of receiving bearings that will not function.4.3 Bearings are easily damaged at the customers' receiving and test areas. In most cases, bearings should be accepted based on the bearing manufacturer’s certification. Certificates of quality (conformance) supplied by the bearing manufacturer may be furnished in lieu of actual performance of such testing by the receiving activity of the bearings. The certificate shall include the name of the purchaser, contract number/PO number, name of the manufacturer or supplier, item identification, name of the material, lot number, lot size, sample size, date of testing, test method, individual test results, and the specification requirements.4.4 This practice does not cover clean room requirements of miniature and instrument precision bearings. These bearings require clean room environments in accordance with ISO 14644-1 and ISO 14644-2.1.1 This practice covers requirements for the handling of all bearings and bearing components.1.2 This is a general practice. The individual bearing handling requirements shall be as specified herein or as specified in the contract or purchase order. In the event of any conflict between requirements of this practice and the individual bearing requirements of an OEM drawing, procurement specification, or other specification, the latter shall govern. Many companies, organizations, and bearing users have excellent facilities, equipment, and knowledgeable personnel for handling bearings. The thrust of this practice is for users that do not have this knowledge of bearings.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2444-04(2018)
标准名称:
Standard Practice for Damage Prevention of Bearings, and Bearing Components Through Proper Handling Techniques
英文名称:
Standard Practice for Damage Prevention of Bearings, and Bearing Components Through Proper Handling Techniques标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS 4629-2005 (R2018)/Amdt 1-2007 Automatic shut off valves and vent valves
- ASC X9 TR 48-2018 Card-Not-Present (CNP) Fraud Mitigation in the United States: Strategies for Preventing, Detecting, and Responding to a Growing Threat
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes