
【国外标准】 Standard Practice for Sampling Manufactured Staple Fibers, Sliver, or Tow for Testing
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Assigning a value to any property of the material in a container or in a lot, consignment, or delivery involves a measurement process that includes both sampling and testing procedures. The correctness of the value assigned depends upon the variability due to testing. Even when the variability due to testing is minimized by carefully developed procedures, correct and consistent estimates of the true value of the property are possible only when the sampling procedure avoids systematic bias, minimizes variations due to sampling, and provides a laboratory sample of adequate size.5.2 This practice may not give the most efficient sampling plan that might be devised in special situations but it does present a general procedure that gives satisfactory precision with an economical amount of sampling and one which does not require elaborate statistical computation based on previous knowledge of the amount of variation between lot samples, between laboratory samples, and between test specimens.5.3 The smallest number of specimens required for a given variability in the average result will usually be obtained by (1) minimizing the number of shipping units in the lot sample, (2) taking one of the shipping units in the laboratory sample, and (3) taking the prescribed specimen(s) from the selected laboratory sample shipping unit. (See 7.3 and 7.4.)5.4 To minimize the cost of sampling a lot of material, it is necessary to agree on the required variance for the reported average for a lot of material:5.4.1 Estimate the variance due to lot samples, the variance due to laboratory samples, and the variance due to test specimens.5.4.2 Calculate the total variance for the average test results for several combinations of the number of lot samples, the number of laboratory samples per lot sample, and the number of test specimens per laboratory sample.5.4.3 Calculate the cost of performing each of the sampling schemes considered in 5.4.2.5.4.4 Select the sampling scheme that (1) has the required precision, and (2) is most economical to perform.1.1 This practice covers a procedure for the division of shipments of manufactured staple fiber, sliver (or top) or tow into lots and the sampling of such lots for testing.NOTE 1: For sampling yarns, refer to Practice D2258.NOTE 2: This practice differs from BISFA2 rules for staple fibers in the lot sampling, by the elimination of separate sampling of outer versus inner container areas, in the reduction of number of strata from 6 to 5, and by the elimination of compositing to obtain a single laboratory sample for the lot when testing properties which do not depend on as-received moisture content.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D3333-07(2018)
标准名称:
Standard Practice for Sampling Manufactured Staple Fibers, Sliver, or Tow for Testing
英文名称:
Standard Practice for Sampling Manufactured Staple Fibers, Sliver, or Tow for Testing标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS 4629-2005 (R2018)/Amdt 1-2007 Automatic shut off valves and vent valves
- ASC X9 TR 48-2018 Card-Not-Present (CNP) Fraud Mitigation in the United States: Strategies for Preventing, Detecting, and Responding to a Growing Threat
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes