
【国外标准】 Standard Test Method for Determining and Reporting Dynamic Dielectric Properties (Withdrawn 2009)
本网站 发布时间:
2024-02-28
- ASTM E2039-04
- Withdrawn, No replacement
- 定价: 0元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
Dielectric measurement and testing provide a method for determining the permittivity and loss factors as a function of temperature, frequency, time, or a combination of these variables. Plots of the dielectric properties against these variables yield important information and characteristics about the specimen under test.This procedure can be used to do the following:5.2.1 Locate transition temperatures of polymers and other organic materials, that is, changes in molecular motion (or atomic motion in the case of ions) of the material. In temperature regions where significant changes occur, permittivity increases with increasing temperature (at a given frequency) or with decreasing frequency (at constant temperature). A maximum is observed for the loss factor in cases where dipole motions dominate over ionic movement.35.2.2 Track the reaction in polymerization and curing reactions. This may be done under either isothermal or nonisothermal conditions. Increasing molecular weight or degree of crosslinking normally leads to decreases in conductivity.45.2.3 Determine diffusion coefficients of polar gases or liquids into polymer films on dielectric sensors. The observed change in permittivity typically is linear with diffusant concentration, as long as the total concentration is relatively low.5This procedure can be used, for example, to evaluate by comparison to known reference materials:5.3.1 The mix ratio of two different organic materials. This may be determined either through use of permittivity or loss factor values. In early studies, permittivity has been found to be linear with concentration.65.3.2 The degree of phase separation in multicomponent systems.5.3.3 The filler type, amount, pretreatment, and dispersion.This test method can be used for observing annealing and the submelting point crystallization process.This test method can be used for quality control, specification acceptance, and process control.1.1 This test method describes the gathering and reporting of dynamic dielectric data. It incorporates laboratory test method for determining dynamic dielectric properties of specimens subjected to an oscillatory electric field using a variety of dielectric sensor/cell configurations on a variety of instruments called dielectric, microdielectric, DETA (DiElectric Thermal Analysis), or DEA (DiElectric Analysis) analyzers.1.2 This test method determines permittivity, loss factor, ionic conductivity (or resistivity), dipole relaxation times, and transition temperatures, and is intended for materials that have a relative permittivity in the range of 1 to 105; loss factors in the range of 0 to 108; and, conductivities in the range 10 16to 1010S/cm.1.3 The test method is primarily useful when conducted over a range of temperatures for nonreactive systems (160C to degradation) and over time (and temperature) for reactive systems and is valid for frequencies ranging from 1 mHz to 100 kHz.1.4 Apparent discrepancies may arise in results obtained under differing experimental conditions. Without changing the observed data, completely reporting the conditions (as described in this test method) under which the data were obtained, in full, will enable apparent differences observed in another study to be reconciled.1.5 SI units are the standard.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 10.
标准号:
ASTM E2039-04
标准名称:
Standard Test Method for Determining and Reporting Dynamic Dielectric Properties (Withdrawn 2009)
英文名称:
Standard Test Method for Determining and Reporting Dynamic Dielectric Properties (Withdrawn 2009)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM E2038-99(2004) Standard Test Method for Temperature Calibration of Dielectric Analyzers (Withdrawn 2009)
- 下一篇: ASTM E204-98(2007) Standard Practices for Identification of Material by Infrared Absorption Spectroscopy, Using the ASTM Coded Band and Chemical Classification Index (Withdrawn 2014)
- 推荐标准
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium
- ASTM A1021/A1021M-20 Standard Specification for Martensitic Stainless Steel Forgings and Forging Stock for High-Temperature Service