微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers a Chlorinated Poly(Vinyl Chloride)/Aluminum/Chlorinated Poly(Vinyl Chloride), (CPVC AL CPVC), composite pressure tubing with a welded aluminum tube reinforcement between the inner and outer layers. The inner and outer CPVC layers are bonded to the aluminum tube by a melt adhesive. The components covered by this specification are intended for use in residential and commercial, hot and cold, potable water distribution systems. This specification covers only composite tubing incorporating a continuously welded aluminum tube.1.1 This specification covers a Chlorinated Poly(Vinyl Chloride)/Aluminum/Chlorinated Poly(Vinyl Chloride), (CPVC-AL-CPVC), composite pressure tubing with a welded aluminum tube reinforcement between the inner and outer layers. The inner and outer CPVC layers are bonded to the aluminum tube by a melt adhesive. Included is a system of nomenclature for the composite tubing, the requirements and test methods for materials, the dimensions of the component layers and finished tubing, adhesion tests, hydrostatic burst and sustained pressure and thermocycling performance. Also given are the requirements and methods of marking. The components covered by this specification are intended for use in residential and commercial, hot and cold, potable water distribution systems.NOTE 1: The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.2 This specification covers only composite tubing incorporating a continuously welded aluminum tube. Tubing consisting of metallic layers not continuously welded together are outside the scope of this specification.1.3 Specifications for internal bushings for use with composite tubing meeting the requirements of this specification are given in Annex A1.1.4 Tubing meeting the requirements of this standard are designed to be used with fittings and solvent cements meeting the requirements of Specification D2846/D2846M when assembled in accordance with Annex A2. Warning—Pressurized (compressed) air or other compressed gases contain large amounts of stored energy which present serious safety hazards should a system fail for any reason.1.5 The products covered by this specification are intended for use with the distribution of pressurized liquids only, which are chemically compatible with the tubing materials. Due to inherent hazards associated with testing components and systems with compressed air or other compressed gases, some manufacturers do not allow pneumatic testing of their products. Consult with specific product manufacturers for their specific testing procedures prior to pneumatic testing.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.NOTE 2: Suggested hydrostatic design pressures and pressure ratings for tubing are listed in Appendix X1.1.7 The following safety hazards caveat pertains only to the test method portion, Section 9. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce inplane shear property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the inplane shear response and should therefore be reported are material, method of material preparation, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, void content, and fiber volume fraction. Properties, in the test direction, that may be obtained from this test method are as follows:5.1.1 Inplane Shear Strength, τ12u,5.1.2 Inplane Shear Strain at Failure, γ12u , and 5.1.3 Inplane Shear Modulus, G12.1.1 This test method determines the inplane shear properties of wound polymer matrix composites reinforced by high-modulus continuous fibers. It describes testing of hoop wound (90°) cylinders in torsion for determination of inplane shear properties.1.2 The technical content of this test method has been stable since 1993 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this test method, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards, including editorial changes and incorporation of updated guidance on specimen preconditioning and environmental testing. The test method, therefore, should not be considered to include any significant changes in approach and practice since 1993. Future maintenance of the test method will only be in response to specific requests and performed only as technical support allows.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The conditioning procedures covered in this practice provide methods for saturating PMC specimens in a liquid environment prior to conducting other tests for property evaluation.5.2 The conditioning may affect geometric and dimensional changes in specimens. In some severe cases, chemical changes may occur in the fiber, polymer and fiber-polymer interphase and interface.5.3 Caution must be taken if Procedure B (10.2, Procedure B—Accelerated Moisture Saturation at Elevated Temperature) is followed to condition PMC specimens at an elevated temperature. Physical and chemical reactions in materials are normally temperature dependent. An increase in experimental temperature may accelerate a desirable moisture diffusion process. However, elevated temperatures above 37°C may also cause undesirable reactions that do not represent appropriate responses of materials at 37°C. Consequently, a pilot study is recommended in Procedure B to determine if a selected elevated temperature can be used for accelerated conditioning. If the properties of materials are determined to be irreversibly affected by this pilot study at the selected elevated temperature, then either an appropriate lower elevated temperature should be determined by repeating the pilot study, or Procedure B should not be used.1.1 This practice covers two procedures for conditioning non-absorbable polymer matrix composite (PMC) materials and implant devices in a liquid environment to obtain a state of saturation.1.2 The purpose of this practice is to standardize methods and reporting procedures for conditioning PMC materials and implant devices (PMC specimens) in a user selected liquid environment prior to conducting subsequent tests. It is not the purpose of this practice to determine the diffusion coefficients or actual saturation levels of a given liquid into the materials and devices. For these determinations, other procedures, such as Test Method D5229/D5229M, may be followed.1.3 Diffusion of liquid into a solid material is a slow process. While the time necessary to achieve saturation at 37°C may be sufficiently short for thin specimens, such as fracture fixation plates, it may be prohibitively long in thick sections, such as femoral components for hip arthroplasty. However, the diffusion process may be accelerated at an elevated temperature. Consequently, two separate procedures (Procedures A and B) are presented in this practice. Procedure A covers exposing the specimen to the desired conditioning environment at 37°C. Procedure B prescribes a method to accelerate the diffusion process by conditioning the specimen at a selected elevated temperature.1.4 This practice does not specify the test environment to be used for conditioning. However, the pH value of immersion liquid shall be maintained at 7.4 ± 0.2 to simulate the in vivo environment.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The techniques described in this guide, if properly used in conjunction with a knowledge of behavior of particular material systems, will aid in the proper preparation of consolidated laminates for mechanical property testing.5.2 The techniques described are recommended to facilitate the consistent production of satisfactory test specimens by minimizing uncontrolled processing variance during specimen fabrication.5.3 Steps 3 through 8 of the 8-step process may not be required for particular specimen or test types. If the specimen or test does not require a given step in the process of specimen fabrication, that particular step may be skipped.5.4 A test specimen represents a simplification of the structural part. The test specimen's value lies in the ability of several sites to be able to test the specimen using standard techniques. Test data may not show identical properties to those obtained in a large structure, but a correlation can be made between test results and part performance. This may be due, in part, to the difficulty of creating a processing environment for test specimens that identically duplicates that of larger scale processes.5.5 Tolerances are guidelines based on current lab practices. This guide does not attempt to give detailed instructions due to the variety of possible panels and specimens that could be made. The tolerances should be used as a starting reference from which refinements can be made.1.1 This guide provides guidelines to facilitate the proper preparation of laminates and test specimens from fiber-reinforced organic matrix composite prepregs. The scope is limited to organic matrices and fiber reinforcement in unidirectional (tape) or orthagonal weave patterns. Other forms may require deviations from these general guidelines. Other processing techniques for test coupon preparation, for example, pultrusion, filament winding and resin-transfer molding, are not addressed.1.2 Specimen preparation is modeled as an 8-step process that is presented in Fig. 1 and Section 8. Laminate consolidation techniques are assumed to be by press or autoclave. This practice assumes that the materials are properly handled by the test facility to meet the requirements specified by the material supplier(s) or specification, or both. Proper test specimen identification also includes designation of process equipment, process steps, and any irregularities identified during processing.FIG. 1 8 Step Mechanical Test Data ModelNOTE 1: Material identification is mandatory. Continuous traceability of specimens is required throughout the process. Process checks (Appendix X4) may be done at the end of each step to verify that the step was performed to give a laminate or specimen of satisfactory quality. Steps 4 and 5 may be interchanged. For aramid fibers, step 5 routinely precedes step 4.  Steps 6, 7 and 8 may be interchanged.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Advanced composite systems are used in a number of applications as shields to prevent penetration by projectiles. In general, the use of composites is more effective for blunt, rather than sharp, projectiles or in hybrid systems in which an additional shield can be used to blunt a sharp projectile. Knowledge of the penetration impact resistance of different material systems or the effects of environmental or in-service load exposure to the penetration resistance of given materials is useful for product development and material selection.5.2 An impact test used to measure the penetration resistance of a material can serve the following purposes:5.2.1 To quantify the effect of fiber architecture, stacking sequence, fiber and matrix material selection, and processing parameters on the penetration resistance of different composite materials;5.2.2 To measure the effects of environmental or in-service load exposure on the penetration impact resistance of a given material system; and5.2.3 As a tool for quality assurance requirements for materials designed for penetration resistance applications.5.3 The penetration resistance values obtained with this test method are most commonly used in material specification and selection and research and development activities. The data are not intended for use in establishing design allowables, as the results are specific to the geometry and physical conditions tested and are not generally scalable to other configurations.5.4 The reporting section requires items that tend to influence the penetration resistance of material systems. These include the following: fiber and matrix materials, fiber architecture, layup sequence, methods of material fabrication, environmental exposure parameters, specimen geometry and overall thickness, void content, specimen conditioning, testing environment and exposure time, specimen fixture and alignment, projectile mass and geometry, and projectile orientation at impact. Additional reporting requirements include size and description of damage, results of any pre- and post-test nondestructive inspection, impact velocity, accuracy of the velocity measurement apparatus, and whether or not the projectile penetrated the panel. Residual velocity is a desirable, but not a necessary, value to be reported.5.5 The reporting section shall also include the parameters of a statistical function that gives the probability of penetration as a function of impact kinetic energy (see 14.4).5.6 The relevant measurements that result from the impact test are the kinetic energy and impact velocity of the projectile and whether or not the projectile penetrated the specimen. An optional item to be measured is the loss in kinetic energy of the projectile as a function of impact velocity if measurements of the residual velocity are recorded.1.1 This test method measures the resistance of flat composite panels in one specific clamping configuration to penetration by a blunt projectile in free flight. In this test method, the term “penetration” is defined as the case in which the projectile travels completely through the composite panel and fully exits the back side. The composite materials may be continuous fiber angle-ply, woven or braided fiber-reinforced polymer matrix composites, or chopped fiber-reinforced composites. The resistance to penetration is quantified by a statistical function that defines the probability of penetration for a given kinetic energy.1.2 This test method is intended for composite test panels in which the thickness dimension is small compared with the test panel width and length (span to thickness on the order of 40 or greater).1.3 This test method is intended for applications such as jet engine fan containment, open rotor engine blade containment, or other applications in which protection is needed for projectiles at velocities typically lower than seen in ballistic armor applications. The typical impact velocity that this test is intended for is in the range of 100 to 500 m/s [300 to 1500 ft/s], as opposed to higher velocities associated with armor penetration.1.4 A flat composite panel is fixed between a circular-shaped clamping fixture and a large base fixture each with a large coaxial hole defining a region of the panel that is subjected to impact in the direction normal to the plane of the flat panel by a blunt projectile. Clamping pressure is provided by 28 through bolts that pass through the front clamp, the test specimen, and the back plate. The mass, geometry, desired impact kinetic energy, and impact orientation of the projectile with respect to the panel are specified before the test. Equipment and procedures are required for measuring the actual impact velocity and orientation during the test. The impact penetration resistance can be quantified by either the velocity or kinetic energy required for the projectile to penetrate the test panel fully. A number of tests are required to obtain a statistical probability of penetration for given impact conditions.1.5 This test method measures the penetration resistance for a specific projectile and test configuration and can be used to screen materials for impact penetration resistance, compare the impact penetration resistance of different composite materials under the same test geometry conditions, or assess the effects of in-service or environmental exposure on the impact penetration resistance of materials.1.6 The impact penetration resistance is highly dependent on the test panel materials and architecture, projectile geometry and mass, and panel boundary conditions. Results are not generally scalable to other configurations but, for the same test configurations, may be used to assess the relative impact penetration resistance of different materials and fiber architectures.1.7 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Within the text, the inch-pound units are shown in brackets.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The nighttime retroreflective properties of pavement markings are known to improve driving safety. Retroreflective composite optics have been developed to improve retroreflectivity in dry and rainy wet conditions. For customers purchasing these materials it’s important to verify the consistency and performance. This guide provides a set of laboratory procedures which can be selected individually or together to evaluate lot-to-lot consistency of composite optics of the same type and manufacturer. These are not in-service performance procedures and don’t necessarily predict in-service performance.1.1 This guide presents a series of options for evaluating lot-to-lot consistency of retroreflective composite optics of the same type and form from the same manufacturer and does not recommend any specific course of action to be taken. This guide is meant to increase the awareness of information and approaches and is not meant to recommend any specific course of action per ASTM’s Form and Style for ASTM Standards definition for a Guide.1.1.1 This guide does not determine lab procedure selection or acceptance criteria for a specific retroreflective composite optics product for its intended use. It is the responsibility of the manufacturer and customer to negotiate these details based on their specific needs.1.1.2 This guide is not intended to predict in-service performance levels.1.1.3 This guide is not intended for comparison of different types of composite optics or manufacturers of composite optics.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a measure of the dimensional stability and integrity of the coated edge of various composite wood products under accelerated moisture stress. It is widely used as an indicator or predictor of the anticipated performance of composite wood products during exterior exposure. It may be used for developmental evaluation of coatings, substrates, or both. It may also be useful for quality control or monitoring of the production of coated or uncoated composite wood products.1.1 This test method is intended to serve as a means for measurement of swelling and cracking of the coated or uncoated edge of a composite wood substrate that has been subjected to wetting by a test solution containing surface active agent.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce in-plane shear property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the shear response and should therefore be reported include the following: material, methods of material preparation and lay-up, specimen stacking sequence and overall thickness, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time at temperature, void content, and volume percent reinforcement. Properties that may be derived from this test method include the following:5.1.1 In-plane shear stress versus shear strain response,5.1.2 In-plane shear chord modulus of elasticity,5.1.3 Offset shear properties,5.1.4 Maximum in-plane shear stress for a ±45° laminate, and5.1.5 Maximum in-plane engineering shear strain for a ±45° laminate.1.1 This test method determines the in-plane shear response of polymer matrix composite materials reinforced by high-modulus fibers. The composite material form is limited to a continuous-fiber-reinforced composite ±45° laminate capable of being tension tested in the laminate x direction.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce transverse compressive property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the transverse compressive response and should therefore be reported are: material, method of material preparation, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, void content, and fiber volume fraction. Properties in the test direction that may be obtained from this test method are:5.1.1 Transverse compressive strength, σ22uc,5.1.2 Transverse compressive strain at failure, ε22uc,5.1.3 Transverse compressive modulus of elasticity, E22, and5.1.4 Poisson's ratio, γ21.1.1 This test method determines the transverse compressive properties of wound polymer matrix composites reinforced by high-modulus continuous fibers. It describes testing of hoop wound (90°) cylinders in axial compression for determination of transverse compressive properties.1.2 The technical content of this test method has been stable since 1993 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this test method, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards, including editorial changes and incorporation of updated guidance on specimen preconditioning and environmental testing. The test method, therefore, should not be considered to include any significant changes in approach and practice since 1993. Future maintenance of the test method will only be in response to specific requests and performed only as technical support allows.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to produce transverse tensile property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors which influence the transverse tensile response and should, therefore, be reported are: material, methods of material preparation, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, void content, and fiber volume fraction. Properties, in the test direction, which may be obtained from this test method include: 5.1.1 Transverse Tensile Strength, 5.1.2 Transverse Tensile Strain at Failure, 5.1.3 Transverse Tensile Modulus of Elasticity, E22, and 5.1.4 Poisson's Ratio, υ21. 1.1 This test method determines the transverse tensile properties of wound polymer matrix composites reinforced by high-modulus continuous fibers. It describes testing of hoop wound (90°) cylinders in axial tension for determination of transverse tensile properties. 1.2 The technical content of this test method has been stable since 1993 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this test method, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards, including editorial changes and incorporation of updated guidance on specimen preconditioning and environmental testing. The test method, therefore, should not be considered to include any significant changes in approach and practice since 1993. Future maintenance of the test method will only be in response to specific requests and performed only as technical support allows. 1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. 1.3.1 Within the text, the inch-pound units are shown in brackets. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 WPCs are intended for use in both structural and non-structural applications. The test methods described within are intended to address products that are manufactured from virgin or recycled wood and thermoplastic sources. These methods provide a reference for the evaluation of several mechanical and physical properties important for structural and non-structural uses of WPCs.1.1 This guide covers test methods appropriate for evaluating a wide range of performance properties for wood-plastic composite (WPC) products. It was developed from evaluations of both experimental and currently manufactured products, and is not intended to suggest that all the tests listed are necessary or appropriate for each application of a WPC. The user must determine which test methods apply to the particular application being evaluated (see Appendix X1).1.2 Details of manufacturing processes may be proprietary and are beyond the scope of this guide.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification presents the standard procedures for establishing the performance rating of wood-plastic composite (WPC) deck boards and guardrail systems (guards or handrails). The purpose of this specification is to establish the basis for code recognition of these products or systems in exterior applications where combustible construction is allowed. The general requirements foe these products shall be dictated by their performance in the following test methods: flesural tests; temperature and moisture effects; ultraviolet resistance test; freeze-thaw resistance test; biodeterioration tests; and fire performance tests. Deck boards shall additionally examined by: creep-recovery test; determination of unadjusted allowable load; mechanical fastener holding tests; and slip resistance test. In the same manner, guards and handrails shall additionally be analyzed through concentrated load tests, and one- and two-family dwelling requirements.1.1 This specification covers procedures to establish a performance rating for wood-plastic composite and plastic lumber for use as exterior deck boards, stair treads, guards, and handrails. The purpose of this specification is to establish a basis for code recognition of these products or systems in exterior applications.NOTE 1: While wood-plastic composites contain wood or other cellulosic materials, the presence of wood or other cellulosic materials in plastic lumber is not required by this specification. Due to non-wood materials in wood-plastic composites and plastic lumber the structural, physical, fire, and other attributes may not be similar to those of wood.NOTE 2: The products addressed in this standard are considered combustible. No fire response characteristic is required in this specification except for flame spread index as determined in accordance with Test Method E84.1.1.1 The plastic component of wood-plastic composites and plastic lumber covered by this specification shall consist primarily of thermoplastics.1.2 Deck boards, stair treads, guards, and handrails covered by this specification are permitted to be of any code compliant shape and thickness (solid or non-solid).1.3 Wood-plastic composites and plastic lumber are produced in a broad range of fiber and/or resin formulations. It is recognized that the performance requirements in this specification are valid for any material or combination of materials used as deck boards, stair treads, guards, or handrails.1.4 Details of manufacturing processes are beyond the scope of this specification.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 Table of Contents:  Section 1Referenced Documents 2Terminology 3General Requirements 4 Sampling 4.1 Sample Size 4.2 Conditioning 4.3 Flexural Tests 4.4 Temperature and Moisture Effects 4.5 Ultraviolet (UV) Resistance Test 4.6 Freeze-Thaw Resistance Test 4.7 Biodeterioration Tests 4.8 Fire Performance Tests 4.9Deck Board Performance Requirements 5 General 5.1 Flexural Performance Tests 5.2 Determination of the Unadjusted Allowable Load 5.3 Creep-Recovery Test 5.4 Mechanical Fastener Holding Tests 5.5 Slip Resistance Test 5.6Guard and Handrail Performance Requirements 6 General 6.1 Guardrail System Test Requirements 6.2  One- and Two-Family Dwelling Requirements 6.2.1.1 Handrail Test Requirements (Concentrated Load) 6.3Report 7Independent Inspection 8Manufacturing Standard 9Precision and Bias 10Keywords 11Two-Span Test Method Annex A1Commentary Appendix X11.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The properties evaluated by this test method are intended to provide comparative information on the effects of fire-retardant chemical formulations and environmental conditions on the flexural properties and IB strength of FRSC panels.5.2 This practice uses a controlled elevated-temperature environment to produce temperature-induced losses in the mechanical properties of FRSC panels and untreated panels.5.3 Prediction of performance in natural environments has not been directly correlated with the results of this test method.5.4 The reproducibility of results in elevated-temperature exposure is highly dependent on the type of specimens tested and the evaluation criteria selected, as well as the control of the operating variables. In any testing program, sufficient replicates shall be included to establish the variability of the results. Variability is often observed when similar specimens are tested in different chambers even though the testing conditions are nominally similar and within the ranges specified in this test method.1.1 This test method is designed as a laboratory screening test. It is intended to establish an understanding of the respective contributions of the many wood material, fire-retardant, resin and processing variables, and their interactions, upon the mechanical properties of fire-retarded mat-formed wood structural composite (FRSC) panels as they affect flexural and internal bond (IB) performance and as they are often affected later during exposure to high temperature and humidity. Once the critical material and processing variables have been identified through these small-specimen laboratory screening tests, additional testing and evaluation shall be required to determine the effect of the treatment on the panel structural properties and the effect of exposure to high temperature on the properties of commercially produced FRSC panels. In this test method, treated structural composite panels are exposed to a temperature of 77°C (170°F) and at least 50% relative humidity.1.2 The purpose of the preliminary laboratory-based test method is to compare the flexural properties and IB strength of FRSC panels relative to untreated structural composite panels with otherwise identical manufacturing parameters. The results of tests conducted in accordance with this test method provide a reference point for estimating strength temperature relationships for preliminary purposes. They establish a starting point for subsequent full-scale testing of commercially produced FRSC panels.1.3 This test method does not cover testing and evaluation requirements necessary for product certification and qualification or the establishment of design value adjustment factors for FRSC panels.NOTE 1: One potentially confounding limitation of this preliminary screening test method is that it may be conducted with laboratory panels that may not necessarily represent commercial quality panels. A final qualification program should likely be conducted using commercial quality panels and the scope of the review should include evaluation of the effects of the treatment and elevated temperature exposure on all relevant mechanical properties of the commercially produced panel.1.4 This test method is not intended for use with structural plywood.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification recognizes the complexity of structural glued products. This specification, or parts thereof, shall be applicable to structural composite lumber portions of manufactured structural components. Tests shall be performed to determine the properties of the material in accordance to the following test methods: moisture content measurement; bending; tension parallel to grain; compression parallel to grain; compression perpendicular to grain; longitudinal shear; connections; bond quality; product durability; edgewise bending durability; lateral edge nail durability; thickness swell; and density gradient through the thickness.1.1 This specification recognizes the complexity of structural glued products. Consequently, this specification covers both specific procedures and statements of intent that sampling and analysis must relate to the specific product.1.2 This specification was developed in the light of currently manufactured products as defined in 3.2. Materials that do not conform to the definitions are beyond the scope of this specification. A brief discussion is found in Appendix X2.1.3 Details of manufacturing procedures are beyond the scope of this specification.NOTE 1: There is some potential for manufacturing variables to affect the properties of members that are loaded for sustained periods of time. Users of this specification are advised to consider the commentary on this topic in Appendix X2.1.4 This specification primarily considers end use in dry service conditions defined in the governing code-referenced design standards, such as in most covered structures. The conditioning environment of 6.3 is considered representative of such uses.1.5 The performance of structural composite lumber is affected by wood species, wood element size and shape, and adhesive and production parameters. Therefore, products produced by each individual manufacturer shall be evaluated to determine their product properties, regardless of the similarity in characteristics to products produced by other manufacturers. Where a manufacturer produces product in more than one facility, each production facility shall be evaluated independently. For additional production facilities, any revisions to the full qualification program in accordance with this specification shall be approved by the independent qualifying agency.1.6 This specification is intended to provide manufacturers, regulatory agencies, and end users with a means to evaluate a composite lumber product intended for use as a structural material.1.7 This specification covers initial qualification sampling, mechanical and physical tests, analysis, and design value assignments. Requirements for a quality-control program and cumulative evaluations are included to ensure maintenance of allowable design values for the product.1.8 This specification, or parts thereof, shall be applicable to structural composite lumber portions of manufactured structural components.1.9 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test practice is designed to produce tensile property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the tensile response and should therefore be reported include the following: materials (laminates and adhesive), methods of material preparation including surface preparation prior to bonding, lay-ups, specimen stacking sequence, joint taper ratio or step length, ply overlap length, material relative thicknesses and stiffness of the parent and repair laminates, adhesive bond stiffness, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time at temperature, void content, and volume percent reinforcement. Properties in the test direction, which may be obtained from this test practice, include the following:5.1.1 Ultimate tensile strength (based on the nominal parent material thickness), (Fptu).5.1.2 Ultimate tensile strength (based on the nominal repair material thickness), (Frtu).5.1.3 Ultimate running force per repair ply, (Nj).1.1 This test practice defines the procedure for determination of the tensile strength of a tapered or stepped joint of polymer matrix composite materials. It is applicable to secondary bonded or co-bonded laminates with either unidirectional plies or woven fabric reinforcements. The materials to be bonded may be different material systems. In the bondline, a separate adhesive material may or may not be used (example: adhesives may be used with a prepreg system or may not be used with a wet lay-up repair system). The range of acceptable test laminates and thicknesses is described in 8.2.1.1.2 This practice supplements Test Method D3039/D3039M for tensile loading. Several important test specimen parameters (for example, joint length, ply overlaps, step depth, and taper ratio) are not mandated by this practice, however, these parameters are required to be specified and reported to support repeatable results.1.3 Unidirectional (0° ply orientation) tape composites, textile composites, as well as multidirectional composite laminates, can be tested.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4.1 Within the text the inch-pound units are shown in brackets.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
121 条记录,每页 15 条,当前第 2 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页