微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Seven-wire steel strand is used in pre-tensioned and post-tensioned concrete construction.4.2 0.600 in. [15.24 mm] diameter, Grade 270 seven-wire steel strand is used to make prestressed ground anchors which are often bonded to cement grout.4.3 Manufacturing processes, subsequent handling, and storage conditions may influence the strand bond.4.4 The primary use of this test method is to establish the relative bond strength of 0.600 in. [15.24 mm] seven-wire steel strand.4.5 The relative bond strength is determined by recording the pullout force at a certain displacement of the strand.AbstractThis test method deals with the standard procedures for establishing the relative bond strength of Grade 270 prestressing steel strands of specified diameter in cement grout as used in prestressed ground anchors for evaluating the effects of manufacturing practices on bond strength. The bond strength values obtained shall not be used to design the bond strength of ground anchors that depend on field conditions. This test method is not intended to be used as a bond test for pretensioned concrete applications. The test specimen shall be cut from standard production coils and shall not be wiped or cleaned. Pull test shall be made in accordance with the method.1.1 This test method describes procedures to establish the relative bond strength of 0.600 in. [15.24 mm] diameter, Grade 270 [1860] seven-wire steel strand in cement grout as used in prestressed ground anchors for the purpose of evaluating the effects of manufacturing practices on bond strength.1.2 The bond strength values obtained are not intended to be used to design the bond length of ground anchors that depend on field conditions.1.3 This test method is not intended to be used as a bond test for prestressed concrete applications.1.4 The values stated in either inch-pound or SI units are to be regarded as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is used as a basis for determining the minimum ground-based octane requirement of turbocharged/supercharged aircraft engines by use of PRFs and RFs.5.2 Results from standardized octane ratings will play an important role in defining the octane requirement of a given aircraft engine, which can be applied in an effort to determine a fleet requirement.1.1 This practice covers ground-based octane rating procedures for turbocharged/supercharged spark ignition aircraft engines. This practice has been developed to allow the widest range of applicability possible but may not be appropriate for all engine types. This practice is specifically directed to ground-based testing and actual in-flight octane ratings may produce significantly different results.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

5.1 The purpose of this practice is to outline a procedure for using GWT to locate areas in metal pipes in which wall loss has occurred due to corrosion or erosion.5.2 GWT does not provide a direct measurement of wall thickness, but is sensitive to a combination of the CSC (or reflection coefficient) and circumferential extent and axial extent of any metal loss. Based on this information, a classification of the severity can be assigned.5.3 The GWT method provides a screening tool to quickly identify any discontinuity along the pipe. Where a possible defect is found, a follow-up inspection of suspected areas with ultrasonic testing or other NDT methods is normally required to obtain detailed thickness information, nature, and extent of damage.5.4 GWT also provides some information on the axial length of a discontinuity, provided that the axial length is longer than roughly a quarter of the wavelength.5.5 The identification and severity assessment of any possible defects is qualitative only. An interpretation process to differentiate between relevant and non-relevant signals is necessary.5.6 This practice only covers the application specified in the scope. The GWT method has the capability and can be used for applications where the pipe is insulated, buried, in road crossings, and where access is limited.5.7 GWT shall be performed by qualified and certified personnel, as specified in the contract or purchase order. Qualifications shall include training specific to the use of the equipment employed, interpretation of the test results, and guided wave technology.5.8 A documented program which includes training, examination, and experience for the GWT personnel certification shall be maintained by the supplying party.1.1 This practice provides a guide for the use of waves generated using magnetostrictive transduction for guided wave testing (GWT) welded tubulars. Magnetostrictive materials transduce or convert time varying magnetic fields into mechanical energy. As a magnetostrictive material is magnetized, it strains. Conversely, if an external force produces a strain in a magnetostrictive material, the material’s magnetic state will change. This bi-directional coupling between the magnetic and mechanical states of a magnetostrictive material provides a transduction capability that can be used for both actuation and sensing devices.1.2 GWT utilizes ultrasonic guided waves in the 10 to approximately 250 kHz range, sent in the axial direction of the pipe, to non-destructively test pipes for discontinuities or other features by detecting changes in the cross-section or stiffness of the pipe, or both.1.3 GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of discontinuities. However, an estimate of the severity of the discontinuity can be obtained.1.4 This practice is intended for use with tubular carbon steel products having nominal pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.).1.5 This practice only applies to GWT of basic pipe configuration. This includes pipes that are straight, constructed of a single pipe size and schedules, fully accessible at the test location, jointed by girth welds, supported by simple contact supports and free of internal, or external coatings, or both; the pipe may be insulated or painted.1.6 This practice provides a general practice for performing the examination. The interpretation of the guided wave data obtained is complex and training is required to properly perform data interpretation.1.7 This practice does not establish an acceptance criterion. Specific acceptance criteria shall be specified in the contractual agreement by the cognizant engineer.1.8 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification deals with the performance of shielded transition couplings to join dissimilar DWV pipe and fittings above ground. All steel parts made from round stock shall be 300 series stainless steel. The elastomeric gasket shall consist of one piece and shall have an inside center stop-ring spaced equal distance from the ends. The clamp assembly shall be tested to withstand the stated installation torque. The following shall also be done: deflection test, shear test, and unrestrained hydrostatic joint test.1.1 This specification covers the performance of shielded transition couplings to join dissimilar DWV pipe and fittings above ground up to and including 15-in. pipe and fittings. This standard is intended to cover reducing couplings used to join pipes and fittings of different sizes, materials, and different outside diameters.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The committee with jurisdiction over this standard is not aware of any comparable standards published by other organizations.1.4 The following precaution comment pertains only to the test method portion, Section 7, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the performance of shielded transition couplings using flexible PVC gaskets to join dissimilar DWV pipe and fittings above and below ground. The gaskets shall be permitted to be spliced or molded. The elastomeric gasket shall be free from imperfections and porosity that affects its use and serviceability. Clamps assembly screws or bolts shall not have screw-driver slots. Each coupling shall undergo deflection test, shear test, and unrestrained hydrostatic joint test.1.1 This specification describes the properties of devices or assemblies suitable for use as mechanical couplings using thermoplastic elastomeric (TPE) gaskets, hereinafter referred to as couplings, for joining drain, waste, and vent (DWV), sewer, sanitary, and storm plumbing systems for above and below ground use.1.2 The pipe to be joined shall be of similar or dissimilar materials or size, or both.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 The ASTM standards referenced herein shall be considered mandatory.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D607-82(2019) Standard Specification for Wet Ground Mica Pigments Active 发布日期 :  1970-01-01 实施日期 : 

This standard specification covers wet ground mica pigments for use in the manufacture of protective coatings. Pigments shall be made by wet grinding muscovite mica. Properties such as density, moisture, grit, coarse particles, residue, ignition loss, and color shall conform to the requirements of the specification.1.1 This specification covers two types of finely divided muscovite mica, commercially known as wet ground mica, suitable for use in the manufacture of protective coatings.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This guide establishes the safety, performance and maintenance requirements pertaining to above-ground (indoor/outdoor), public-use skatepark facilities and any elements included therein that are intended to be used in the performance of the sports including skateboarding, inline skating, and BMX biking. The skatepark elements covered here are guardrails (including return guardrails and adjoining resting deck guardrails), protective edging/surfaces, riding surfaces, copings, approaches/thresholds, stairs, and portable and stand-alone elements. Items such as fencing, lighting, and operational structures are not addressed here.1.1 This guide covers safety and performance guidelines pertaining to public skatepark facilities and any element included therein. These guidelines pertain to any elements intended to be used in the performance of the sports including skateboarding, inline skating, and BMX biking. Items such as fencing, lighting, and operational structures are not intended to be a part of this guide.1.2 This guide applies to above-ground (indoor/outdoor) skatepark elements, intended for recreational use.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 Tolerances – General Measures, Tolerances, and Conversions—The general dimensional tolerances for this specification (unless otherwise noted) are as follows:Dimension ToleranceX in. or ft ±0.5 in. or ftX.X in. or ft ±0.05 in. or ftX.XX in. or ft ±0.005 in. or ftNOTE 1: These tolerances still apply to a dimension even when terms like greater than, less than, minimum, or maximum are used.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.NOTE 2: The conversion factor from inch-pound to SI units is 1 in. = 25.4 mm, and 1 lb = 0.45359 kg.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 These practices enable the following information to be available:3.1.1 Material atomic oxygen erosion characteristics.3.1.2 An atomic oxygen erosion comparison of four well-characterized polymers.3.2 The resulting data are useful to:3.2.1 Compare the atomic oxygen durability of spacecraft materials exposed to the low Earth orbital environment.3.2.2 Compare the atomic oxygen erosion behavior between various ground laboratory facilities.3.2.3 Compare the atomic oxygen erosion behavior between ground laboratory facilities and in-space exposure.3.2.4 Screen materials being considered for low Earth orbital spacecraft application. However, caution should be exercised in attempting to predict in-space behavior based on ground laboratory testing because of differences in exposure environment and synergistic effects.1.1 The intent of these practices is to define atomic oxygen exposure procedures that are intended to minimize variability in results within any specific atomic oxygen exposure facility as well as contribute to the understanding of the differences in the response of materials when tested in different facilities.1.2 These practices are not intended to specify any particular type of atomic oxygen exposure facility but simply specify procedures that can be applied to a wide variety of facilities.1.3 The values stated in SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 In service, vapor retarders may be exposed to a variety of conditions, so no one test will provide evaluations related to performance for all exposures (refer to Guide E241 and Practice C755). Neither will all test methods listed be necessary in all evaluations for specific exposures (see 16.2).4.2 Limitations—Prior to use and in service, vapor retarders may be exposed to a variety of conditions so no one test will provide evaluations related to performance for all exposures (refer to Guide E241 and Practice C755). Neither will all tests be necessary in all evaluations for specific exposures. Consequently, the tests and required test results shall be agreed upon by the purchaser and the supplier (see 16.2).1.1 These test methods2 cover the determination of the properties of flexible membranes to be used as vapor retarders in contact with earth under concrete slabs, against walls, or as ground cover in crawl spaces. The test methods are applicable primarily to plastic films and other flexible sheets. The materials are not intended to be subjected to sustained hydrostatic pressure. The procedures simulate conditions to which vapor retarders may be subjected prior to and during installation, and in service.1.2 The test methods included are:  SectionWater-Vapor Transmission of Material as Received  7Water-Vapor Transmission after Wetting and Drying and after Long- Time Soaking  8Tensile Strength  9Resistance to Puncture 10Resistance to Plastic Flow and Elevated Temperature 11Effect of Low Temperatures on Flexibility 12Resistance to Deterioration from Organisms and Substances in Con- tacting Soil 13Resistance to Deterioration from Petroleum Vehicles for Soil Poisons 14Resistance to Deterioration from Exposure to Ultraviolet Light 15Resistance to Flame Spread 16Report 171.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
CAN/CSA-C22.2 NO. 144-M91 (R2001) Ground Fault Circuit Interrupters 现行 发布日期 :  1970-01-01 实施日期 : 

This PDF includes Updates No. 2 and No. 3 1. Scope 1.1 This Standard applies to ground fault circuit interrupters (GFCIs) intended for installation in non-hazardous locations at nominal system voltages of 600 V and less, in accordance with CSA Stan

定价: 637元 / 折扣价: 542

在线阅读 收 藏

3.1 This test method provides information on the condition of concrete bridge decks overlaid with asphaltic concrete without necessitating removal of the overlay, or other destructive procedures.3.2 This test method also provides information on the condition of bridge decks without overlays and with portland cement concrete overlays.3.3 A systematic approach to bridge deck rehabilitation requires considerable data on the condition of the decks. In the past, data has been collected using the traditional methods of visual inspection supplemented by physical testing and coring. Such methods have proven to be tedious, expensive, and of limited accuracy. Consequently, GPR provides a mechanism to rapidly survey bridges in an efficient, nondestructive manner.3.4 Information on the condition of asphalt-covered concrete bridge decks is needed to estimate bridge deck condition for maintenance and rehabilitation, to provide cost-effective information necessary for rehabilitation contracts.3.5 GPR is currently the only nondestructive method that can evaluate bridge deck condition on bridge decks containing an asphalt overlay.1.1 This test method covers several ground penetrating radar (GPR) evaluation procedures that can be used to evaluate the condition of concrete bridge decks overlaid with asphaltic concrete wearing surfaces. These procedures can also be used for bridge decks overlaid with portland cement concrete and for bridge decks without an overlay. Specifically, this test method predicts the presence or absence of concrete or rebar deterioration at or above the level of the top layer of reinforcing bar.1.2 Deterioration in concrete bridge decks is manifested by the corrosion of embedded reinforcement or the decomposition of concrete, or both. The most serious form of deterioration is that which is caused by corrosion of embedded reinforcement. Corrosion may be initiated by deicing salts, used for snow and ice control in the winter months, penetrating the concrete. In arid climates, the corrosion can be initiated by chloride ions contained in the mix ingredients. Deterioration may also be initiated by the intrusion of water and aggravated by subsequent freeze/thaw cycles, causing damage to the concrete and subsequent debonding of the reinforcing steel with the surrounding compromised concrete.1.2.1 As the reinforcing steel corrodes, it expands and creates a crack or subsurface fracture plane in the concrete at or just above the level of the reinforcement. The fracture plane, or delamination, may be localized or may extend over a substantial area, especially if the concrete cover to the reinforcement is small. It is not uncommon for more than one delamination to occur on different planes between the concrete surface and the reinforcing steel. Delaminations are not visible on the concrete surface. However, if repairs are not made, the delaminations progress to open spalls and, with continued corrosion, eventually affect the structural integrity of the deck.1.2.2 The portion of concrete contaminated with excessive chlorides is generally structurally deficient compared with non-contaminated concrete. Additionally, the chloride-contaminated concrete provides a pathway for the chloride ions to initiate corrosion of the reinforcing steel. It is therefore of particular interest in bridge deck condition investigations to locate not only the areas of active reinforcement corrosion, but also areas of chloride-contaminated and otherwise deteriorated concrete.1.3 This test method may not be suitable for evaluating bridges with delaminations that are localized over the diameter of the reinforcement, or for those bridges that have cathodic protection (coke breeze as cathode) installed on the bridge or for which a conductive aggregate has been used in the asphalt (that is, blast furnace slag). This is because metals are perfect reflectors of electromagnetic waves, since the wave impedances for metals are zero.1.4 Since a precision estimate for this standard has not been developed, the test method is to be used for research and informational purposes only. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 5.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers high strength, extra-high-strength, and utilities grades of concentric lay steel wire strand composed of three wires or seven wires in class A, class B, or class C zinc coatings specifically intended for use as overhead ground wires or static wires for electric transmission lines. The strand shall have a left lay with a uniform pitch of not more than 16 times the nominal diameter of the strand. The strand is preformed when the component wires are set to the helical form which they assume in the product by any means of process other than by merely laying them about the strand core. The approximate weight per unit length of strand and the minimum breaking strength of the finished strand are presented. The elongation shall be measured as the percentage increase in separation between the jaws of the testing machine from the position after application of the initial load, to the position of at initial failure in the test specimen.1.1 This specification covers high-strength, extra-high-strength, and utilities grades of concentric lay steel wire strand composed of three wires or seven wires with Class A, Class B, or Class C zinc coatings specifically intended for use as overhead ground wires or static wires for electric power transmission lines.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The design of a photovoltaic module or system intended to provide safe conversion of the sun's radiant energy into useful electricity must take into consideration the possibility of hazard should the user come into contact with the electrical potential of the module. These test methods describe procedures for verifying that the design and construction of the module or system are capable of providing protection from shock through normal installation and use. At no location on the module should this electrical potential be accessible, with the obvious exception of the intended output leads.5.2 These test methods describe procedures for determining the ability of the module to provide protection from electrical hazards.5.3 These procedures may be specified as part of a series of qualification tests involving environmental exposure, mechanical stress, electrical overload, or accelerated life testing.5.4 These procedures are normally intended for use on dry modules; however, the test modules may be either wet or dry, as indicated by the appropriate protocol.5.5 These procedures may be used to verify module assembly on a production line.5.6 Insulation resistance and leakage current are strong functions of module dimensions, ambient relative humidity and absorbed water vapor, and the ground path continuity procedure is strongly affected by the location of contacts and test leads to the module frame and grounding points.5.6.1 For these reasons, it is the responsibility of the user of these test methods to specify the maximum acceptable leakage current for the dielectric voltage withstand test, and the maximum acceptable resistance for the ground path continuity procedure.5.6.2 Fifty μA has been commonly used as the maximum acceptable leakage current (see ANSI/UL 1703, Section 26.1), and 0.1 Ω has been commonly used as the maximum acceptable resistance.5.7 Some module designs may not use any external metallic components and thus lack a ground point designated by the module manufacturer. In these cases, the ground path continuity test is not applicable.1.1 These test methods cover procedures for (1) testing for current leakage between the electrical circuit of a photovoltaic module and its external components while a user-specified voltage is applied and (2) for testing for possible module insulation breakdown (dielectric voltage withstand test).1.2 A procedure is described for measuring the insulation resistance between the electrical circuit of a photovoltaic module and its external components (insulation resistance test).1.3 A procedure is provided for verifying that electrical continuity exists between the exposed external conductive surfaces of the module, such as the frame, structural members, or edge closures, and its grounding point (ground path continuity test).1.4 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This guide sets forth minimum standard requirements for use in local codes and ordinances relating to fences/barriers separating pedestrian circulation and traffic areas from skate park and related venue enclosures to prevent collision, contain the skateboards and prevent falls into such in-ground venue areas.5.2 This guide sets forth minimum standard requirements for use in local codes and ordinances relating to enclosing skate parks and preventing unfamiliar use of the facilities creating falls from hazards.5.3 This guide does not have the effect of law, nor is it intended to supersede local codes and ordinances of a more restrictive nature.5.4 Studies have been the basis for certain recommendations in this guide and will assist those who intend to provide protection against unfamiliar access by restricting access to children under the age of five years who have no training and others unfamiliar with the equipment and features in skateboards. This would include, but is not limited to, state and local governments, model code organizations, building code groups, and consumers. It is understood that the format will vary depending upon the specific use and local conditions.1.1 This guide provides recommended minimum requirements for denoting the various types of fences/barriers for skate parks and for inline skating or roller hockey rinks and extreme performance areas.1.2 This guide provides the minimum requirements for the protection of the participants from intrusion of other activity users; from unauthorized and unsupervised use by users that could be harmed by unanticipated entry into the area and from falls into in-ground skate park area.1.3 This guide provides for the safety of spectators from errant skateboard use.1.4 The values stated in inch-pound units are to be regarded as the standard. The SI values in parentheses are provided for information purposes only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 This guide covers the calibration of row, band, and broadcast applicators. Attainment of accurate and more uniform application can reduce the quantity of active ingredient required for a given degree of control, thus improving environmental quality and safety at a more economical cost. A single-calibration procedure applicable in all situations is not feasible because of the nature of the variables involved in chemical applications.1.1 This guide is for those who prepare granular pesticide ground applicator calibration procedures. The purpose is to encourage methods that will improve uniformity and accuracy of application with granular applicators.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 4.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
55 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页