微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Activated carbons used in gas-phase adsorption may be subjected to heating, either from heat applied externally to the carbon bed, or heat generated by radioactive4 contaminants, or by the adsorption process itself. If the application of heat is sudden, or if no ample means to conduct the heat from the carbon bed exists, the carbon bed may ignite. This test method provides a controlled laboratory test to determine the temperatures at which such ignition occurs. As stated in 1.2, this does not necessarily give the temperature at which ignition will occur under a specific bed operating condition. This test method does, however, allow some ranking of carbons with regard to ignition temperature, and is a useful quality control method for unused carbons.1.1 This test method covers the determination of reference ignition temperature of granular activated carbon in flowing air. This test method provides a basis for comparing the ignition characteristics of different carbons, or the change in ignition characteristics of the same carbon after a period of service.1.2 The ignition temperature, as determined by this test method, cannot be interpreted as the probable ignition temperature of the same carbon under the operating conditions of a specific application unless those conditions are essentially the same as those in this test method.2 If it is desired to determine the ignition temperature of the carbon under a specific set of operating conditions, the test may be modified to simulate such conditions, taking into consideration the following variables: (1) air flow rate; (2) moisture content of the carbon; (3) bed depth; (4) relative humidity of the air stream; (5) heating rate; (6) contaminants (for example, hydrocarbons, etc.) in the air stream; and (7) contaminants that may have been adsorbed by the carbon under prior service conditions.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This practice applies to the blending of automotive spark-ignition engine fuels with ethanol concentrations greater than those suitable for conventional-fuel vehicles and less than the minimum ethanol content specification limits of Specification D5798. These mid-level ethanol fuel blends are for use in flexible-fuel vehicles and are sometimes referred to at retail as “Ethanol Flex Fuel.”1.2 These mid-level ethanol fuel blends are only suitable for use in ground flexible-fuel vehicles equipped with spark-ignition engines. Flexible-fuel vehicles are designed to operate on gasoline or gasoline-ethanol blends that meet the requirements of Specification D4814, ethanol fuel blends that meet the requirements of Specification D5798, or any combination of these. In the United States, these vehicles are certified by the U.S. EPA as emissions compliant with these types of fuels.1.3 The mid-level ethanol fuel blend shall be blended from either:1.3.1 Denatured fuel ethanol conforming to the requirements of Specification D4806 with a reduced limit on inorganic chloride content that will ensure no more than 1 mg/kg inorganic chloride in the finished fuel and from spark-ignition engine fuel conforming to Specification D4814 (often at a distribution terminal or bulk plant), or1.3.2 Ethanol fuel blends conforming to Specification D5798 and from spark-ignition engine fuel conforming to Specification D4814 (often at a retail site).1.4 This practice describes the required procedures for blending various mid-level ethanol fuel blends for flexible-fuel vehicles at the bulk distribution point or retail/commercial delivery site. These requirements may be applied at other points in the production and distribution system when provided by agreement between the purchaser and the supplier.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty 3856 kg (8500 lb), or less, gross vehicle weight trucks. The tests are conducted using a specified 4.6-L spark-ignition engine on a dynamometer test stand. It applies to multiviscosity grade oils used in these applications. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.1.2 The values stated in either SI units or other units shall be regarded separately as the standard. Within the text, the SI units are stated first with the other units shown in parentheses. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other, without combining values in any way.1.3This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This test method is arranged as follows:Subject SectionIntroduction 1Referenced Documents 2Terminology 3Summary of Test Method 4Significance and Use 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Load Control 6.4Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Engine Intake Air Supply 6.8Temperature Measurement 6.9AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Pressure Measurement and Pressure Sensor Locations 6.12Engine Hardware and Related Apparatus 6.13Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Sealing Compounds 7.5Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.2Engine Assembly Procedure 9.3General Assembly Instructions 9.3.1Bolt Torque Specifications 9.3.2Sealing Compounds 9.3.3New Parts Required for Each New Engine 9.3.4Harmonic Balancer 9.3.5Oil Pan 9.3.6Intake Manifold 9.3.7Camshaft Covers 9.3.8Thermostat 9.3.9Thermostat Housing 9.3.10Coolant Inlet 9.3.11Oil Filter Adapter 9.3.12Dipstick Tube 9.3.13Water Pump 9.3.14Sensors, Switches, Valves, and Positioners 9.3.15Ignition System 9.3.16Fuel Injection System 9.3.17Intake Air System 9.3.18Engine Management System (Spark and Fuel Control) 9.3.19Accessory Drive Units 9.3.20Exhaust Manifolds 9.3.21Engine Flywheel and Guards 9.3.22Lifting of Assembled Engines 9.3.23Engine Mounts 9.3.24Calibration 10BC Pre-Test Verification 10.1Engine/Test Stand Calibration 10.2Procedure 10.2.1Reporting of Reference Results 10.2.2Analysis of Reference Oils 10.2.3Flush Effectiveness Demonstration 10.2.4Instrument Calibration 10.3Engine Load Measurement System 10.3.1Fuel Flow Measurement System 10.3.2Coolant Flow Measurement System 10.3.3Thermocouple and Temperature Measurement System 10.3.4Humidity Measurement System 10.3.5Other Instrumentation 10.3.6Test Procedure 11Preparation for Initial Start-Up of New Engine 11.1Initial Engine Start-Up 11.2Coolant Flush 11.3New Engine Break-In 11.4Routine Test Operation 11.5Start-Up and Shutdown Procedures 11.5.8Flying Flush Oil Exchange Procedures 11.5.9Test Operating Stages 11.5.10Stabilization to Stage Conditions 11.5.11Stabilized BSFC Measurement Cycle 11.5.12Data Logging 11.5.13BC Oil Flush Procedure for BC Oil Before Test Oil 11.5.14BSFC Measurement of BC Oil Before Test Oil 11.5.15Test Oil Flush Procedure 11.5.16Test Oil Aging 11.5.17BSFC Measurement of Aged Test Oil 11.5.18BC Oil Flush Procedure for BC Oil After Test Oil 11.5.19BSFC Measurement for BC Oil After Test Oil 11.5.20General Test Data Logging Forms 11.5.21Diagnostic Review Procedures 11.5.22Determination of Test Results 12Final Test Report 13Validity Statement 13.1Report Format 13.2Precision, Validity, and Bias 14Precision 14.1Validity 14.2Test Stand Calibration Status 14.2.1Validity Interpretation of Deviant Operational Conditions 14.2.2Keywords 15ANNEXESRole of ASTM Test Monitoring Center Annex A1Detailed Specifications and Drawings of Apparatus Annex A2Oil Heater Cerrobase Refill Procedure Annex A3Engine Part Number Listing Annex A4Flying Flush Checklists Annex A5Safety Precautions Annex A6Report Format Annex A7Control Chart Technique for Stand/Engine Severity Adjustment (SA) Annex A8Statistical Equations for Mean and Standard Deviation Annex A9Fuel Injector Evaluation Annex A10Pre-test Maintenance Checklist Annex A11APPENDIXESProcurement of Test Materials Appendix X1Data Dictionary Appendix X2

定价: 0元 / 折扣价: 0

在线阅读 收 藏
CAN1-6.4-M79 (R2001) Automatic Gas Ignition Systems and Components 现行 发布日期 :  1970-01-01 实施日期 : 

1.1 Scope 1.1.1 This standard applies to newly produced automatic gas ignition systems (see Part III, Definitions) and components thereof other than types utilizing low, extra low, or high voltages, constructed entirely of new, unused parts and materi

定价: 1138元 / 折扣价: 968

在线阅读 收 藏

5.1 Knowledge of the specified individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons may be determined through the use of this test method.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range of 0.01 % mass to approximately 30 % mass. The procedure may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the procedure is used for components with concentrations outside the specified ranges.1.3 The test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range of 1 % mass to 30 % mass. However, the cooperative study data provided sufficient statistical data for MTBE only.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic (for example, virgin naphthas), or both, constituents above n-octane may reflect significant errors in PONA type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this procedure is applicable to samples containing less than 25 % mass of olefins. However, some interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Caution should also be exercised when analyzing olefin-free samples using this test method as some of the paraffins may be reported as olefins since analysis is based purely on retention times of the eluting components.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent volume) or other test methods, such as those based on multidimensional PONA type of instruments (Test Method D6839).1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744, or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and D5623 for sulfur compounds, or equivalent.1.6 Annex A1 of this test method compares results of the test procedure with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toluene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using specific test methods.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏
110 条记录,每页 15 条,当前第 8 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页