微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Benzene is a compound that endangers health, and the concentration is limited by environmental protection agencies to produce a less toxic gasoline.5.2 This test method is fast, simple to run, and inexpensive.5.3 This test method is applicable for quality control in the production and distribution of spark-ignition engine fuels.1.1 This test method covers the determination of the percentage of benzene in spark-ignition engine fuels. It is applicable to concentrations from 0.1 % to 5 % by volume.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers requirements for fuel grade ethyl tertiary-butyl ether (ETBE) that may be used for blending with fuels for aviation spark-ignition engines where permissible. The requirements for ETBE that may be used for blending with fuels for aviation spark-ignition engines are given. The ETBE shall be visually free of undissolved water, sediment, and suspended matter that could render the material unacceptable for the intended application.1.1 This specification covers requirements for fuel grade ethyl tertiary-butyl ether (ETBE) that may be used for blending with fuels for aviation spark-ignition engines where permissible. Other ETBE grades available in the marketplace that do not comply with the requirements of this specification, are not suitable for blending with aviation fuels.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 During operation of electrical equipment, including wires, resistors, and other conductors, it is possible for overheating to occur, under certain conditions of operation or when malfunctions occur. When this happens, a possible result is ignition of the insulation material.5.2 This test method assesses the relative resistance of electrical insulating materials to ignition by the effect of hot wire sources.5.3 This test method determines the average time, in seconds, required for material specimens to ignite under the specified conditions of test.5.4 This method is suitable to characterize materials, subject to the appropriate limitations of an expected precision of ±15 %, to categorize materials.5.5 In this procedure the specimens are subjected to one or more specific sets of laboratory conditions. If different test conditions are substituted or the end-use conditions are changed, it is not always possible by or from this test to predict changes in the fire-test-response characteristics measured. Therefore, the results are valid only for the fire test exposure conditions described in this procedure.1.1 This test method is intended to differentiate, in a preliminary fashion, among materials with respect to their resistance to ignition because of their proximity to electrically-heated wires and other heat sources.21.2 This test method applies to molded or sheet materials available in thicknesses up to and including 13.0 mm (0.51 in.).1.3 This test method applies to materials that are rigid or flexible at normal room temperatures. It is important to minimize deformation during preparation, especially during the wire-wrapping step described in 10.1, by following the method outlined under Clause 10, Sample Preparation. Examples of deformation include bowing, in either a transverse or a longitudinal direction, twisting of the specimen, and indentation of the wire into the specimen during the wire-wrapping step, to a degree visible to the eye.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. (See SI10 for further details.)1.5 This test method measures and describes the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.NOTE 1: Although this test method and IEC TS 60695-2-20 (withdrawn) differ in approach and in detail, data obtained using either are technically equivalent.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers two types of metal ignition crucibles, nickel or platinum, complete with covers, for laboratory use. Two types of crucibles shall be classified according to their capacities: Type I is nickel with capacities of 100 mL and 250 mL and Type II is platinum with capacity of 20 mL. Type I are crucibles and covers which shall be made from 99.4% nickel, spun and hardened and Type II are crucibles and covers which shall be made from 99.9% platinum plus iridium, with the iridium content of not more than 0.4%. The crucibles shall have a standard shape with a flat base to give a firm and stable resting surface. The side wall shall form a sloping and convex surface extending up to the brim. Crucibles shall be of one-piece construction. Covers shall be flat, sunken in the center, and shall have an extension to serve as a handle. The sunken area in the center shall fit inside the crucible.1.1 This specification covers two types of metal ignition crucibles, nickel or platinum, complete with covers, for laboratory use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 LOI refers to the mass loss of a combustion residue whenever it is heated in an air or oxygen atmosphere to high temperatures. In the cement industry, use of the term LOI normally refers to a mass loss in a sample heated to 950 °C. To combustion engineers, the term LOI normally refers to mass losses in samples heated to temperatures normally less than 950 °C. These test methods establish a procedure for determining LOI values for combustion residues heated to 750 °C or 950 °C. LOI values from these test methods can be used by industries that utilize combustion residues in various processes and products.5.2 If the solid combustion residue is heated to estimate the combustible or unburned carbon in the sample, it has been shown that LOI and estimation of unburned carbon do not necessarily agree well with each other and that LOI should not be used as an estimate of unburned carbon in all combustion residues.4 Direct determination of unburned (combustible) carbon can be carried out using Test Method D6316.5.3 If the solid combustion residue is heated to prepare an ash for the determination of the mass fractions of major and minor elements, use the heating procedure described in Test Methods D3682, D4326, and D6349, or the procedures for the 750 °C LOI determination described in these test methods (Method A).5.4 If the solid combustion residue is heated to prepare an ash for the determination of the mass fractions of trace elements, use the heating procedure described in Test Methods D3683 and D6357.NOTE 1: Combustion residues produced in furnace operations or other combustion systems can differ from the ash yield, as determined in Test Methods D3174 and D7582, because combustion conditions influence the chemistry and amount of ash. Combustion causes an expulsion of all water, the loss of carbon dioxide from carbonates, the conversion of metal sulfides into metal oxides, metal sulfates and sulfur oxides, and other chemical reactions. Likewise, the “ash” obtained after igniting combustion residues can differ in composition and amount from Test Methods D3174 and D7582 ash yields because of different heating procedures, combustion of unburned carbon, and decomposition of materials in the residue.1.1 These test methods cover the determination of the mass loss from solid combustion residues upon heating in an air or oxygen atmosphere to a prescribed temperature. The mass loss can be due to the loss of moisture, carbon, sulfur, and so forth, from the decomposition or combustion of the residue.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide describes the requirements for igniting oil for the purpose of in-situ burning. It is intended to aid decision-makers and spill-responders in contingency planning, spill response, and training, and to aid manufacturers in developing effective ignition devices.4.2 This guide describes criteria for the design and selection of ignition devices for in-situ burning applications.4.3 This guide is not intended as a detailed operational manual for the ignition and burning of spilled oil.1.1 This guide relates to the use of in-situ burning of spilled oil. The focus of the guide is in-situ burning of oil on water, but the ignition techniques and devices described in the guide are generally applicable to in-situ burning of oil spilled on land as well.1.2 The purpose of this guide is to provide information that will enable oil-spill responders to select the appropriate techniques and devices to successfully ignite oil spilled on water.1.3 This guide is one of four related to in-situ burning of oil spills. Guide F1788 addresses environmental and operational considerations. Guide F2152 addresses fire-resistant booms, and Guide F2230 addresses burning in ice conditions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. In particular, the storage, transport, and use of ignition devices may be subject to regulations that will vary according to the jurisdiction. While guidance of a general nature is provided herein, users of this guide should determine regulations that apply to their situation.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test Method—It was determined through field testing that intake valve deposits could adversely affect the driveability of certain automobiles.7 Southwest Research Institute and BMW of North America (BMW NA) jointly conducted testing to develop this test method to determine an unleaded automotive spark-ignition engine fuel's propensity to form intake valve deposits. This testing concluded that if an automotive spark-ignition engine fuel could keep intake valve deposits at or below a certain average weight per valve at the end of mileage accumulation, then that automotive spark-ignition engine fuel could be used in the BMW vehicle-engine combination for a specified period without intake valve deposits causing driveability degradation. Minimizing intake valve deposits may be necessary to maintain vehicle driveability and tailpipe emissions control.5.1.1 State and Federal Legislative and Regulatory Action—Legislative activity and rulemaking primarily by California Air Resources Board8 and the Environmental Protection Agency9 necessitate the acceptance of a standardized test method to evaluate the intake system deposit forming tendency of an automotive spark-ignition engine fuel.5.1.2 Relevance of Results—The operating conditions and design of the engine and vehicle used in this test method are not representative of all modern automobiles. These factors shall be considered when interpreting test results.5.2 Test Validity: 5.2.1 Procedural Compliance—The test results are not considered valid unless the test is completed in compliance with all requirements of this test method. Deviations from the parameter limits presented in Sections 10 and 11 will result in an invalid test. Engineering judgment shall be applied during conduct of the test method when assessing any anomalies to ensure validity of the test results.5.2.2 Vehicle Compliance—A test is not considered valid unless the vehicle met the quality control inspection requirements as described in Section 10.1.1 This test method covers a vehicle test procedure for evaluation of intake valve deposit formation of unleaded spark-ignition engine fuels. This test method uses a 1985 model BMW 318i2 vehicle. Mileage is accumulated following a specified driving schedule on either public road or test track. This test method is adapted from the original BMW of North America/Southwest Research Institute Intake Valve Deposit test and maintains as much commonality as possible with the original test. Chassis dynamometers shall not be used for this test procedure as the BMW NA/SwRI IVD Test was not intended to be applicable to chassis dynamometers and no correlation between road operation and chassis dynamometers has been established.NOTE 1: If there is any doubt as to the latest edition of Test Method D5500, contact ASTM International.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific statements on hazards are given throughout this test method.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
ASTM D2533-99 Standard Test Method for Vapor-Liquid Ratio of Spark-Ignition Engine Fuels (Withdrawn 2008) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

The tendency of a fuel to vaporize in common automobile fuel systems is indicated by the vapor-liquid ratio of that fuel at conditions approximating those in critical parts of the fuel systems.1.1 This test method covers a procedure for measuring the volume of vapor formed at atmospheric pressure from a given volume of gasoline. The ratio of these volumes is expressed as the vapor-liquid (V/L) ratio of the gasoline at the temperature of the test. 1.2 Dry glycerol can be used as the containing liquid for nonoxygenated fuels. 1.3 Mercury can be used as the containing liquid with both oxygenated and nonoxygenated fuels. Because oxygenates in fuels may be partially soluble in glycerol, gasoline-oxygenate blends must be tested using mercury as the containing fluid. Note 1-Test Method D4815 can be used to determine the presence of oxygenates in fuels. 1.4 The values stated in both inch-pound and SI units are to be regarded separately as the standard. The units given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7 and Note 10.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

A knowledge of spark-ignition engine fuel composition is useful for regulatory compliance, process control, and quality assurance.The quantitative determination of olefins and other hydrocarbon types in spark-ignition engine fuels is required to comply with government regulations.This test method is not applicable to M85 and E85 fuels, which contain 85 % methanol and ethanol, respectively.1.1 This test method provides for the quantitative determination of oxygenates, paraffins, olefins, naphthenes, and aromatics in low-olefin spark-ignition engine fuels by multidimensional gas chromatography. Each hydrocarbon type can be reported either by carbon number (see ) or as a total through C10, except for olefins, which can only be reported through C9. Higher boiling hydrocarbons cannot be reported by type and are reported as a composite group. The lower limit of detection for a single hydrocarbon component or carbon number type is 0.05 mass %.Note 1—There can be an overlap between the C9 and C10 aromatics; however, the total is accurate. Isopropyl benzene is resolved from the C8 aromatics and is included with the other C9 aromatics. Naphthalene is determined with the C11+ components.1.2 This test method is applicable for total olefins in the range from 0.05 to 13 mass %. The test method can quantitatively determine olefins in samples where the olefin concentration does not exceed 0.6 % C4 or 4.0 % C5 or 4.5 % of the combined C4 and C5. Although the precision for benzene was determined in the range from 0.3 to 1.0 mass %, this test method can be used to determine benzene concentrations up to 5.0 mass %.1.3 This test method is not intended to determine individual hydrocarbon components except for those hydrocarbon types for which there is only one component within a carbon number. Individually determined hydrocarbons are benzene, toluene, cyclopentane, propane, propylene, and cyclopentene.1.4 Precision data has only been obtained on samples containing MTBE. Application of this test method to determine other oxygenates shall be verified in the user's laboratory. Methanol cannot be determined and shall be quantitated by an appropriate oxygenate method such as Test Method D 4815 or D 5599. Methanol is fully resolved and does not interfere with the determination of other components or groups.1.5 Although specifically written for spark-ignition engine fuels containing oxygenates, this test method can also be applied to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.1.6 The values stated in SI units are to be regarded as the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Knowledge of the concentration of benzene may be required for regulatory use, control of gasoline blending, and/or process optimizations.1.1 This test method covers the quantitation in liquid volume percent of benzene and toluene in finished motor and aviation spark ignition fuels by gas chromatography. This test method has two procedures: Procedure A uses capillary column gas chromatography and Procedure B uses packed column gas chromatography. Procedures A and B have separate precisions.1.2 The method has been evaluated for benzene using a D6300-compliant Interlaboratory Study (ILS), with the lowest and highest ILS sample concentration means as follows: (1) Procedure A between 0.12 % and 5.2 % by volume and (2) Procedure B between 0.10 % and 5.0 % by volume.1.3 The method has been evaluated for toluene using a D6300-compliant Interlaboratory Study (ILS), with the lowest and highest ILS sample concentration means as follows: (1) Procedure A between 0.4 % and 19.7 % by volume, and (2) Procedure B between 2.0 % and 20.0 % by volume.1.4 For reporting, the lowest and highest concentration ranges for benzene and toluene for Procedure A of this test method per Practice D6300 see 13.2.1.5 For reporting, the lowest and highest concentration ranges for benzene and toluene for Procedure B of this test method per Practice D6300 see 25.2.1.6 For benzene by Procedure A, the following oxygenated fuels are included in the working range: (1) ethanol up to 20 % by volume (E20); (2) methanol up to 10 % by volume (M10). Fuels M85 and E85 were excluded.1.7 For benzene by Procedure B the following oxygenated fuels are included in the working range: (1) ethanol up to 20 % by volume (E20); (2) methanol up to 10 % by volume (M10). Fuels M85 and E85 were excluded.1.8 For toluene by Procedure A the following oxygenated fuels were included in the working range: (1) ethanol up to 20 % by volume (E20); (2) M85 and E85.1.9 For toluene by Procedure B the following oxygenated fuels are included in the working range: (1) ethanol up to 20 % by volume (E20); (2) M85 and E85.1.10 Procedure A uses MIBK as the internal standard. Procedure B uses sec-butanol as the internal standard. The use of Procedure B for fuels containing blended butanols requires that sec-butanol be below the detection limit in the fuels as sec-butanol is an internal standard. For Procedure B, an alternative separation column set described in the annex (A2.3, Annex Approach B) uses MEK as the internal standard when butanols may be blended into gasolines.1.11 This test method includes a between method bias section for benzene based on Practice D6708 bias assessment between Test Method D3606 Procedure B and Test Method D5769. It is intended to allow Test Method D3606 Procedure B to be used as a possible alternative to Test Method D5769. The Practice D6708 derived benzene correlation equation is applicable for benzene measurements in the reportable range from 0.06 % to 2.88 % by volume as reported by Test Method D3606 Procedure B (see 27.2.1). The correlation complies with EPA’s Performance Based Measurement System (PBMS).1.12 Correlation equations are included in the between test methods bias section 14.2.1 of Procedure A to convert Procedure A to the Procedure B volume percent values for benzene and toluene. The correlations are applicable in the concentration ranges of 0.07 % to 5.96 % by volume for benzene and 0.36 % to 20.64 % by volume for toluene as reported by Procedure A.1.13 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.14 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.15 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 The quantitative determination of olefins in spark-ignition engine fuels is required to comply with government regulations.5.2 Knowledge of the total olefin content provides a means to monitor the efficiency of catalytic cracking processes.5.3 This test method provides better precision for olefin content than Test Method D1319. It also provides data in a much shorter time, approximately 20 min following calibration, and maximizes automation to reduce operator labor.5.4 This test method is not applicable to M85 or E85 fuels, which contain 85 % methanol and ethanol, respectively.1.1 This test method provides for the quantitative determination of total olefins in the C4 to C10 range in spark-ignition engine fuels or related hydrocarbon streams, such as naphthas and cracked naphthas. Olefin concentrations in the range from 0.2 % by liquid-volume or mass to 5.0 % by liquid-volume or mass, or both, can be determined directly on the as-received sample whereas olefins in samples containing higher concentrations are determined after appropriate sample dilution prior to analysis.1.2 This test method is applicable to samples containing alcohols and ethers; however, samples containing greater than 15 % alcohol must be diluted. Samples containing greater than 5.0 % ether must also be diluted to the 5.0 % or less level, prior to analysis. When ethyl-tert-butylether is present, only olefins in the C4 to C9 range can be determined.1.3 This test method can not be used to determine individual olefin components.1.4 This test method can not be used to determine olefins having higher carbon numbers than C10.NOTE 1: Precision was determined only on samples containing MTBE and ethanol.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is used as a basis for determining the minimum ground-based octane requirement of turbocharged/supercharged aircraft engines by use of PRFs and RFs.5.2 Results from standardized octane ratings will play an important role in defining the octane requirement of a given aircraft engine, which can be applied in an effort to determine a fleet requirement.1.1 This practice covers ground-based octane rating procedures for turbocharged/supercharged spark ignition aircraft engines. This practice has been developed to allow the widest range of applicability possible but may not be appropriate for all engine types. This practice is specifically directed to ground-based testing and actual in-flight octane ratings may produce significantly different results.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

1.1 This standard describes a test method for evaluating the ignition sensitivity and fault tolerance of oxygen regulators used for medical and emergency applications.1.2 For the purpose of this standard, a pressure regulator is a device, also called a pressure-reducing valve, that is intended for medical or emergency purposes and that is used to convert a medical or emergency gas pressure from a high, variable pressure to a lower, more constant working pressure [21 CFR 868.2700 (a)].1.3 This standard applies only to oxygen regulators used for medical and emergency applications that are designed and fitted with CGA 870 pin-index adapters and CGA 540 inlet connections (CGA V-1).Note 1--Although this standard applies only to oxygen regulators used for medical or emergency applications, it may also apply to other types of oxygen regulators outside of this scope, at the discretion of the authority having jurisdiction.1.4 This standard provides an evaluation tool for determining the fault tolerance of oxygen regulators used for medical and emergency applications. A fault tolerant regulator is defined as 1) having a low probability of ignition as evaluated by rapid pressurization testing and 2) having a low consequence of ignition as evaluated by forced ignition testing.1.5 This standard is not a design standard; however, it can be used to aid designers in designing and evaluating the safe performance and fault tolerance capability of oxygen regulators used for medical and emergency applications (G 128).Note 2--It is essential that a risk assessment be carried out on breathing gas systems, especially concerning oxygen compatibility (refer to ASTM G 63 and G 94) and toxic product formation due to ignition or decomposition of nonmetallic materials as weighed against the risk of flammability (refer to ISO 15001.2). See Appendix X1 and Appendix X2.1 for details.1.6 This standard is also used to aid those responsible for purchasing or using oxygen regulators used for medical and emergency applications in ensuring that selected regulators are tolerant of the ignition mechanisms that are normally active in oxygen systems.1.7 This standard does not purport to address the ignition sensitivity and fault tolerance of an oxygen regulator caused by contamination during field maintenance. Regulator designers and manufacturers should provide design safeguards to minimize the potential for contamination or its consequences (G 88).1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method is used to obtain the ignition loss of a cured reinforced resin sample.NOTE 2: The basic concept of burning off of the organic matrix of a reinforced polymer composite has also been shown to be a useful method for enabling a visual examination of the fiber architecture or laminate structure of some reinforcements.4.2 If only glass fabric or filament is used as the reinforcement of an organic resin that is completely decomposed to volatile materials under the conditions of this test and the small amount of volatiles (water, residual solvent) that are potentially present are ignored, the ignition loss shall be considered to be the resin content of the sample.4.2.1 This test method does not provide a measure of resin content for samples containing reinforcing materials that lose weight under the conditions of the test or containing resins or fillers that do not decompose to volatile materials released by ignition.1.1 This test method covers the determination of the ignition loss of cured reinforced resins. This ignition loss shall be considered to be the resin content within the limitations of 4.2.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard is used to measure and describe the response of composite material to heat under controlled conditions, but does not by itself incorporate all of the factors required for fire hazard or fire assessments of the composite materials under actual fire conditions.1.4 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The test method is designed to show whether or not a material meets the specifications as given in Specifications C753 or C776.5.2 The powder’s stoichiometry is useful for predicting the oxide's sintering behavior in the pellet production process.1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets.1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material.1.3 This test method also is applicable to UO3 and U3O8 powder.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
92 条记录,每页 15 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页