微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 1145-1989 Determination of tensile properties of plastics materials 现行 发布日期 :  1970-01-01 实施日期 : 

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

4.1 The ability of a plastic material to resist deterioration caused by exposure to light, heat, and water is a property of significance in many applications. This practice is intended to induce property changes associated with end-use conditions, including the effects of ultraviolet solar irradiance, moisture, and heat. The exposure used in this practice is not intended to simulate the deterioration caused by localized weather phenomena, such as, atmospheric pollution, biological attack, and saltwater exposure. (Warning—Variation in operating conditions within the accepted limits of this practice will not necessarily provide the same results. Therefore, no reference to the use of this practice shall be made unless accompanied by a report prepared in accordance with Section 8 that describes the specific operating conditions used. Refer to Practice G151 for detailed information on the caveats applicable to use of results obtained in accordance with this practice.)NOTE 2: Additional information on sources of variability and on strategies for addressing variability in the design, execution, and data analysis of laboratory-accelerated exposure tests is found in Guide G141.4.2 Reproducibility of test results between laboratories has been shown to be good when the stability of materials is evaluated in terms of performance ranking compared to other materials or to a control.5,6 Therefore, exposure of a similar material of known performance (a control) at the same time as the test materials is strongly recommended. It is recommended that at least three replicates of each material be exposed to allow for statistical evaluation of results.4.3 Test results will depend upon the care that is taken to operate the equipment in accordance with Practice G154. Significant factors include regulation of line voltage, temperature of the room in which the device operates, temperature control, and condition and age of the lamp.1.1 This practice covers specific procedures and test conditions that are applicable for using a fluorescent UV lamp and water apparatus exposure of plastics conducted in accordance with Practices G151 and G154. This practice also covers the preparation of test specimens, the test conditions best suited for plastics, and the evaluation of test results.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard and ISO 4892-3 address the same subject matter, but differ in technical contact.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Tensile properties determined by this test method are of value for identifying and characterizing materials for control and specification purposes as well as for providing data for research and development studies.5.2 This test method is intended for use in testing resin-compatible sized glass fiber materials that have been designed specifically for use with certain generic types of plastics. The use of a resin system that is compatible with the reinforcement material under test produces results that are most representative of the actual strength that is available in the material when used as intended in an end item. Premature reinforcement failures occur if the elongation of the resin system is less than that of the reinforcement being tested. It is critical to select a resin system that does not lead to premature reinforcement failure. Use of compatible resin system and complete resin impregnation is recommended to avoid invalid failures and misleading results.5.3 This test method is useful for testing pretreated specimens for which comparative results are desired. Gage length, gripping system, testing speed, and the resin impregnation ratio of the specimen affects the values obtained by this test method.1.1 This test method covers the determination of the comparative tensile properties of glass fiber strands, yarns, and rovings in the form of impregnated rod test specimens when tested under defined conditions of pretreatment, temperature, humidity, and tension testing machine speed. This test method is applicable to continuous filament, glass fiber materials that have been coated with a resin compatible sizing. This method is intended for use in quality control and R & D, and is not intended to be used to develop composites design data.NOTE 1: This method is technically equivalent to the short method described in ISO 9163.NOTE 2: Prime consideration should be given to the use of a polymeric binder that produces specimens that yield the highest consistent values for the glass fiber material under test. Tensile properties vary with specimen preparation, resin impregnation system, and speed and environment of testing. Consider these factors where precise comparative results are desired.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This practice covers the basic test procedures for the determination of the physical properties and the reporting of data for high-density rigid cellular plastics. Samples shall be prepared by either processing samples directly into proper size specimens, or by preparing samples from larger sections as specified in each individual test. Since cellular plastics are often nonuniform in density distribution, a minimum of five specimens shall, therefore, be tested per testing method to obtain representative values. The test methods covered here are to examine the following material properties: apparent density; compressive strength; tensile properties; coefficient of linear thermal expansion; apparent flexural properties; deflection temperature; dielectric breakdown voltage and dielectric strength; thermal conductivity; and water absorption rate.1.1 This practice covers the basic test procedures for determination of the physical properties and reporting of data for high-density rigid cellular plastics.1.2 The values stated in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard and ISO 9054 address the same subject matter, but differ in technical content.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D2734-23 Standard Test Methods for Void Content of Reinforced Plastics Active 发布日期 :  1970-01-01 实施日期 : 

5.1 The void content of a composite may significantly affect some of its mechanical properties. Higher void contents usually mean lower fatigue resistance, greater susceptibility to water penetration and weathering, and increased variation or scatter in strength properties. The knowledge of void content is desirable for estimation of quality of composites.1.1 These test methods cover the void content of reinforced plastics or “composites.” The test methods are applicable to composites for which the effects of ignition on the materials are known. Most plastics, glass, and reinforcements fall into this class. These test methods are not applicable to composites for which the effects of ignition on the plastics, the reinforcement, and any fillers are unknown. This class may include silicone resins, which do not burn off completely, reinforcements consisting of metals, organic materials, or inorganic materials which may gain or lose weight, and fillers consisting of oxides, carbonates, etc., which may gain or lose weight. Note that separate weight loss tests of individual materials will usually, but not necessarily, give the same result as when all the materials are combined.NOTE 1: There is no known ISO equivalent to these test methods.1.2 The values stated in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The resin portion of plastic materials is usually resistant to bacteria, in that it does not serve as a carbon source for the growth of bacteria. It is generally the other components, such as plasticizers, lubricants, stabilizers, and colorants that are responsible for bacterial attack on plastic materials. It is important to establish the resistance of plastics to microbial attack when plastics are used under conditions of high temperature and humidity favorable for such attack.4.2 The effects to be expected are:4.2.1 Surface attack, discoloration, and loss of transmission (optical).4.2.2 Removal of susceptible plasticizers, modifiers, and lubricants, resulting in increased modulus (stiffness), changes in weight, dimensions, and other physical properties, and deterioration of electrical properties such as insulation resistance, dielectric constant, power factor, and dielectric strength.4.3 Often the changes in electrical properties are due principally to surface growth and associated moisture, and to pH changes caused by products of bacterial metabolism. Other effects include preferential growths caused by nonuniform dispersion of plasticizers, lubricants, and other processing additives. Pronounced physical changes may be observed on products in film form or as coatings where the ratio of surface to volume is high, and where nutrient materials such as plasticizers and lubricants continue to diffuse to the surface as they are utilized by the organisms.4.4 Since attack by organisms involves a large element of change due to local accelerations and inhibitions, the order of reproducibility may be rather low. To assure that estimates of behavior are not too optimistic, the greatest observed degree of deterioration should be reported.4.5 Conditioning of specimens such as exposure to leaching, weathering, heat treatment, etc., may have significant effects on the resistance of plastics to bacteria. Determination of these effects is not covered in this document.1.1 This practice covers two procedures, A and B, for determining the effect of bacteria on the properties of plastics in the form of molded and fabricated articles, tubes, rods, sheets, and film materials. Procedure B provides a more extensive contact between the test bacteria and the specimens than does Procedure A. Changes in optical, mechanical, and electrical properties may be determined by the applicable ASTM methods.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 These fatigue tests are used to determine the effect of processing, surface condition, stress, and so forth, on the fatigue resistance of plastic material subjected to flexural stress for relatively large numbers of cycles. The results can also be used as a guide for the selection of plastic materials for service under conditions of repeated flexural stress.5.2 Properties can vary with specimen depth and test frequency. Test frequency can be 1-25 Hz but it is recommended that a frequency of 5 Hz or less be used.5.3 Material response in fatigue is not identical for all plastics. If a plastic does not exhibit an elastic region, where strain is reversible, plastic deformation will occur during fatigue testing, causing the amplitude of the programmed load or deformation to change during testing. In this situation, caution shall be taken when using the results for design as they are generally not indicative of the true fatigue properties of the material.5.4 The results of these fatigue tests are suitable for application in design only when the specimen test conditions realistically simulate service conditions or some methodology of accounting for service conditions is available and clearly defined.5.5 This procedure accommodates various specimen preparation techniques. Comparison of results obtained from specimens prepared in different manners shall not be considered comparable unless equivalency has been demonstrated.1.1 This test method covers the determination of dynamic fatigue properties of plastics in flexure. This method is applicable to rigid and semi-rigid plastics. Stress and strain levels are below the proportional limit of the material where the strains and stresses are relatively elastic. Three-point or four-point bending systems are used to determine these properties.1.2 This test method can be used with two procedures:1.2.1 Procedure A, designed for materials that use three-point loading systems to determine flexural strength. Three-point loading system is used for this procedure.1.2.2 Procedure B, designed for materials that use four-point loading systems to determine flexural strength. Four-point loading system is used for this procedure.1.3 Comparative tests can be run in accordance with either procedure, provided that the procedure is found satisfactory for the material being tested.1.4 The values stated in SI units are to be regarded as the standard. The values provided in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard and ISO 13003 address the same subject matter, but differ in technical content and results cannot be directly compared between the two test methods.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Compression tests provide information about the compressive properties of plastics when employed under conditions approximating those under which the tests are made.4.2 Compressive properties include modulus of elasticity, yield stress, deformation beyond yield point, and compressive strength (unless the material merely flattens but does not fracture). Materials possessing a low order of ductility may not exhibit a yield point. In the case of a material that fails in compression by a shattering fracture, the compressive strength has a very definite value. In the case of a material that does not fail in compression by a shattering fracture, the compressive strength is an arbitrary one depending upon the degree of distortion that is regarded as indicating complete failure of the material. Many plastic materials will continue to deform in compression until a flat disk is produced, the compressive stress (nominal) rising steadily in the process, without any well-defined fracture occurring. Compressive strength can have no real meaning in such cases.4.3 Compression tests provide a standard method of obtaining data for research and development, quality control, acceptance or rejection under specifications, and special purposes. The tests cannot be considered significant for engineering design in applications differing widely from the load-time scale of the standard test. Such applications require additional tests such as impact, creep, and fatigue.4.4 Before proceeding with this test method, reference should be made to the ASTM specification for the material being tested. Any test specimen preparation, conditioning, dimensions, and testing parameters covered in the materials specification shall take precedence over those mentioned in this test method. If there is no material specification, then the default conditions apply. Table 1 in Classification D4000 lists the ASTM materials standards that currently exist.1.1 This test method covers the determination of the mechanical properties of unreinforced and reinforced rigid plastics, including high-modulus composites, when loaded in compression at relatively low uniform rates of straining or loading. Test specimens of standard shape are employed. This procedure is applicable for a composite modulus up to and including 41,370 MPa (6,000,000 psi).1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.NOTE 1: For compressive properties of resin-matrix composites reinforced with oriented continuous, discontinuous, or cross-ply reinforcements, tests may be made in accordance with Test Method D3410/D3410M or D6641/D6641M.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. A specific precautionary statement is given in 13.1.NOTE 2: This standard is equivalent to ISO 604.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This guide is a sequential assembly of extant but unconnected standard tests and practices for the oxidation and biodegradation of plastics, which will permit the comparison and ranking of the overall rate of environmental degradation of plastics that require thermal or photooxidation to initiate degradation. Each degradation stage is independently evaluated to allow a combined evaluation of a polymer’s environmental performance under a controlled laboratory setting. This enables a laboratory assessment of its disposal performance in, soil, municipal or industrial compost, landfill, and water and for use in agricultural products such as mulch film without detriment to that particular environment.NOTE 5: For determining biodegradation rates under municipal or industrial composting conditions, Specification D6400 is to be used, including test methods and conditions as specified.5.2 The correlation of results from this guide to actual disposal environments (for example, agricultural mulch films, municipal or industrial composting, or landfill applications) has not been determined, and as such, the results should be used only for comparative and ranking purposes.5.3 The results of laboratory exposure cannot be directly extrapolated to estimate absolute rate of deterioration by the environment because the acceleration factor is material dependent and can be significantly different for each material and for different formulations of the same material. However, exposure of a similar material of known outdoor performance, a control, at the same time as the test specimens allows comparison of the durability relative to that of the control under the test conditions.1.1 This guide provides a framework or road map to compare and rank the controlled laboratory rates of degradation and degree of physical property losses of polymers by thermal and photooxidation processes as well as the biodegradation and ecological impacts in defined applications and disposal environments after degradation. Disposal environments range from exposure in soil, landfill, and municipal or industrial compost in which thermal oxidation may occur and land cover and agricultural use in which photooxidation may also occur.1.2 In this guide, established ASTM International standards are used in three tiers for accelerating and measuring the loss in properties and molecular weight by both thermal and photooxidation processes and other abiotic processes (Tier 1), measuring biodegradation (Tier 2), and assessing ecological impact of the products from these processes (Tier 3).1.3 The Tier 1 conditions selected for thermal oxidation and photooxidation accelerate the degradation likely to occur in a chosen application and disposal environment. The conditions should include a range of humidity or water concentrations based on the application and disposal environment in mind. The measured rate of degradation at typical oxidation temperatures is required to compare and rank the polymers being evaluated in that chosen application to reach a molecular weight that constitutes a demonstrable biodegradable residue (using ASTM International biometer tests for CO2 evolution appropriate to the chosen environment). By way of example, accelerated oxidation data must be obtained at temperatures and humidity ranges typical in that chosen application and disposal environment, for example, in soil (20 to 30°C), landfill (20 to 35°C), and municipal or industrial composting facilities (30 to 65°C). For applications in soils, local temperatures and humidity ranges must be considered as they vary widely with geography. At least one temperature must be reasonably close to the end use or disposal temperature, but under no circumstances should this be more than 20°C away from the removed that temperature. It must also be established that the polymer does not undergo a phase change, such as glass transition temperature (Tg) within the temperature range of testing.1.4 The residues resulting from the oxidations are then exposed to appropriate disposal or use environments in standard biometric test methods to measure the rate and degree of biodegradation (Tier 2).1.5 The data generated under Tier 1 evaluation and the determined time for the biodegradation in the chosen environment (Tier 2) allow ranking relative to other polymers evaluated under similar environmental conditions with this guide. The degree and time for biodegradation should be consistent with ASTM International methods, and any residues from the intermediate oxidation stage and from biodegradation must be shown to be environmentally benign and not persistent (Tier 3).NOTE 1: The intended use of this guide is for comparison and ranking of data to aid in the design and development and the reduction of environmental impacts of polymers that require no more than 24 months to oxidize and biodegrade in the intended use and disposal options and create no harmful or persistent residues under the appropriate disposal conditions (for example, two seasons of crop-growing conditions in soil).1.6 It is cautioned that the results of any laboratory exposure in this guide cannot be directly extrapolated to actual disposal environments; confirmation to real world exposure is ultimately required as with all ASTM International standards.1.7 The values stated in SI units are to be regarded as standard.NOTE 2: There is no ISO standard that is the equivalent of this standard guide.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

This test method covers the procedure for determining the crazing effect caused by a liquid or semi-liquid on transparent three types of acrylic plastic materials under bending stress. Cast acrylic materials from Types A and B should be annealed according to specifications while the stretched acrylic materials of Type C should not be annealed. All test specimens should be machined from polished acrylic plastic sheets and should have smooth machined surfaces.1.1 This test method covers determination of the crazing effect that a liquid or semi-liquid test compound will have on transparent acrylic plastic material that is under bending stress.1.2 Three types of acrylic material are covered. One, two, or all of the materials shall be used in the test, as specified by the procuring agency. When not specified otherwise, all three types of acrylic shall be used in the test.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

5.1 These test methods shall be used where precise dimensions are necessary for the calculation of properties expressed in physical units. They are not intended to replace practical thickness measurements based on commercial portable tools, nor is it implied that thickness measurements made by the procedures will agree exactly.5.2 Examples of machinist’s micrometers, including pictures with descriptions of their components and pictures of the micrometers used can be located in Practice A1073/A1073M. However, make sure the micrometer, the calibration of it, and the use of it adheres to the requirements of this standard.1.1 These test methods cover determination of the physical dimensions of solid plastic specimens where the dimensions are used directly in determining the results of tests for various properties. Use these test methods except as otherwise required in material specifications.1.2 The values stated in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard and ISO 16012 address the same subject matter, but differ in technical content.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
AS 1146.1-1990 Method for impact tests on plastics Izod impact resistance 废止 发布日期 :  1970-01-01 实施日期 : 

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏
222 条记录,每页 15 条,当前第 14 / 15 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页