微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏
AS 2061-1989 Preparation of coal samples for incident light microscopy 现行 发布日期 :  1989-10-13 实施日期 : 

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

5.1 Ultrasonic extraction using dilute nitric acid is a simpler and easier method for extracting lead from environmental samples than are traditional digestion methods that employ hot plate or microwave digestion with concentrated acids (3), (5), (7), (8). Hence, ultrasonic extraction may be used in lieu of the more rigorous strong acid/high temperature digestion methods (for example, see Ref (3) and Test Method E1613), provided that the performance is demonstrated using accepted criteria as delineated in Guide E1775.5.2 In contrast with hot plate or microwave digestion techniques, ultrasonic extraction is field-portable, which allows for on-site sample analysis.1.1 This practice covers an ultrasonic extraction procedure for the extraction of lead from environmental samples of interest in lead abatement and renovation (or related) work, for analytical purposes.1.2 Environmental matrices of concern include dry paint films, settled dusts, soils, and air particulates.1.3 Samples subjected to ultrasonic extraction are prepared for subsequent determination of lead by laboratory analytical methods.1.4 This practice includes, where applicable, descriptions of procedures for sample homogenization and weighing prior to ultrasonic extraction.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides for the processing of liquid samples obtained in accordance with Practice F302 and Practices F303. It will provide the optimum sample processing for visual contamination methods such as Method F312, and Test Method F314.1.1 This practice covers the processing of liquids in preparation for particulate contamination analysis using membrane filters and is limited only by the liquid-to-membrane filter compatibility.1.2 The practice covers the procedure for filtering a measured volume of liquid through a membrane filter. When this practice is used, the particulate matter will be randomly distributed on the filter surface for subsequent contamination analysis methods.1.3 The practice describes procedures to allow handling particles in the size range between 2 and 1000 μm with minimum losses during handling.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Intact block samples are suitable for laboratory tests where large-sized samples of intact material are required or where such sampling is more practical than conventional tube sampling (Practices D1587/D1587M and D6519), or both.4.2 The intact block method of sampling is advantageous where the soil to be sampled is near the ground surface. It is the best available method for obtaining large intact samples of very stiff and brittle soils, partially cemented soils, and some soils containing coarse gravel.4.3 Excavating a column of soil will relieve stresses in the soil and may result in some expansion of the soil and a corresponding decrease in its unit weight (density) or increase in sampling disturbance, or both. Usually the expansion is small in magnitude because of the shallow depth. Stress changes alone can cause enough disturbances in some soils to significantly alter their engineering properties.4.4 The chain saw has proved advantageous in sampling difficult soils, which are blocky, slickensided, or materials containing alternating layers of hard and soft material.3 The chain saw uses a special carbide-tipped chain.4NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective sampling. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These practices outline the procedures for obtaining intact block (cubical and cylindrical) soil samples.1.2 Intact block samples are obtained for laboratory tests to determine the strength, consolidation, permeability, and other geotechnical engineering or physical properties of the intact soil.1.3 Two sampling practices are presented. Practice A covers cubical block sampling, while Practice B covers cylindrical block sampling.1.4 These practices usually involve test pit excavation and are limited to relatively shallow depths. Except in the case of large diameter (that is, diameters greater than 0.8 m [2.5 ft]) bored shafts of circular cross-section in unsaturated soils, for depths greater than about 1 to 11/2 meters [3 to 5 ft] or depths below the water table, the cost and difficulties of excavating, cribbing, and dewatering generally make block sampling impractical and uneconomical. For these conditions, use of a thin-walled push tube soil sampler (Practice D1587/D1587M), a piston-type soil sampler (Practice D6519), or Hollow-Stem Auger (Practice D6151/D6151M), Dennison, or Pitcher-type soil core samplers, or freezing the soil and coring may be required.1.5 These practices do not address environmental sampling; consult Guides D6169/D6169M and D6232 for information on sampling for environmental investigations.1.6 Successful sampling of granular materials requires sufficient cohesion, cementation, or apparent cohesion (due to moisture tension (suction)) of the soil for it to be isolated in a column shape without undergoing excessive deformations. Additionally, care must be exercised in the excavation, preservation and transportation of intact samples (see Practice D4220/D4220M, Group D).1.7 The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.8 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard.1.8.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.9 These practices offer a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of these practices may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Ground water samples are subject to chemical, physical, and biological change relative to in- situ conditions at the ground surfaces as a result of exposure to ambient conditions during sample collection (for example, pressure, temperature, ultraviolet radiation, atmospheric oxygen, and contaminants) (1) (2).6 Physical and chemical preservation of samples minimize further changes in sample chemistry that can occur from the moment the ground water sample is retrieved, to the time it is removed from the sample container for extraction or analysis, or both. Measures also should be taken to preserve the physical integrity of the sample container.4.2 The need for sample preservation for specific analytes should be defined prior to the sampling event and documented in the site-specific sampling and analysis plan in accordance with Guide D5903. The decision to preserve a sample should be made on a parameter-specific basis as defined by individual analytical methods.4.3 This guide includes examples from government documents in the United States. When work is in other countries or regions, the local governing or regulating agencies should be consulted.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This guide covers methods for field preservation of ground water samples from the point of sampling through receipt at the laboratory. Laboratory preservation methods are not described in this guide. Purging and sampling techniques are not addressed in this standard but are addressed in Guides D6564/D6564M, D6634/D6634M, D7929, and Practice D6771.1.2 Ground water samples are subject to chemical, physical, and biological change relative to in situ conditions at the ground surfaces due to exposure to ambient conditions during sample collection. Physical and chemical preservation of samples minimize further changes in sample chemistry that can occur from the moment the ground water sample is retrieved, to the time it is removed from the sample container for extraction or analysis.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word“ Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test provides an easy and reliable method for the detection of L. pneumophila in potable and non-potable waters in 7 days.5.2 Routine monitoring for L. pneumophila determines whether implemented control measures are effective, such as those outlined in a water safety program (2).5.2.1 Water system management is necessary to maintain L. pneumophila concentrations below hazardous levels. Through routine measurement of L. pneumophila levels, a monitoring program can ensure that control measures are effective and implemented when necessary in response to increasing levels. Water samples may be examined for L. pneumophila during epidemiological investigations as part of local authority, industrial, or hospital programs, or in order to validate treatment control methods. Routine sampling could also be carried out based on risk assessments or on local, state, or federal requirements or guidelines.1.1 This test method describes a simple procedure for the detection of Legionella pneumophila (L. pneumophila) in potable water and non-potable waters (cooling towers, for example). This procedure describes a liquid culture method based on a bacterial enzyme technology. The detection of L. pneumophila is signaled through the utilization of a substrate present in the Legiolert reagent. L. pneumophila cells grow rapidly and reproduce using the rich supply of amino acids, vitamins and other nutrients present in the Legiolert reagent. Actively growing strains of L. pneumophila use the added substrate to produce a brown color indicator or produce turbid growth with or without brown coloration. Legiolert can detect this bacterial species at the following minimum concentrations based on the protocol employed:1.1.1 Potable Water: 1.1.1.1 ≥1 organism / 100 mL at 7 days for 100 mL potable protocol.1.1.1.2 ≥1 organism / 10 mL at 7 days for 10 mL potable protocol.1.1.2 Non-potable Water: 1.1.2.1 ≥1 organism / 1.0 mL at 7 days for 1.0 mL non-potable protocol.1.1.2.2 ≥1 organism / 0.1 mL at 7 days for 0.1 mL non-potable protocol.1.1.3 This test method can be used for potable (drinking) waters and non-potable waters such as cooling tower waters (1).3 It is the user’s responsibility to ensure the validity of this test method for waters of untested matrices.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Fluid analysis is one of the pillars in determining fluid and equipment conditions. The results of fluid analysis are used for planning corrective maintenance activities, if required.5.2 The objective of a proper fluid sampling process is to obtain a representative fluid sample from critical location(s) that can provide information on both the equipment and the condition of the lubricant or hydraulic fluid.5.3 The additional objective is to reduce the probability of outside contamination of the system and the fluid sample during the sampling process.5.4 The intent of this guide is to help users in obtaining representative and repeatable fluid samples in a safe manner while preventing system and fluid sample contamination.1.1 This guide is applicable for collecting representative fluid samples for the effective condition monitoring of steam and gas turbine lubrication and generator cooling gas sealing systems in the power generation industry. In addition, this guide is also applicable for collecting representative samples from power generation auxiliary equipment including hydraulic systems.1.2 The fluid may be used for lubrication of turbine-generator bearings and gears, for sealing generator cooling gas as well as a hydraulic fluid for the control system. The fluid is typically supplied by dedicated pumps to different points in the system from a common or separate reservoirs. Some large steam turbine lubrication systems may also have a separate high pressure pump to allow generation of a hydrostatic fluid film for the most heavily loaded bearings prior to rotation. For some components, the lubricating fluid may be provided in the form of splashing formed by the system components moving through fluid surfaces at atmospheric pressure.1.3 Turbine lubrication and hydraulic systems are primarily lubricated with petroleum based fluids but occasionally also use synthetic fluids.1.4 For large lubrication and hydraulic turbine systems, it may be beneficial to extract multiple samples from different locations for determining the condition of a specific component.1.5 The values stated in SI units are regarded as standard.1.5.1 The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Insulating cement must be mixed with water and molded to prepare for testing.1.1 This practice covers mixing thermal insulating cement samples with water in the preparation of specimens for use in all tests on the cement.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Spectral analysis of soils for agricultural use is being used worldwide to obtain rapid data on soil nutrients. for the purpose of agricultural management including fertilizer application and other amendments such as pH adjustment, organic supplements, etc. Satellite, aerial, and ground-based sampling methods are being used. This test method applies to ground-based, terrestrial field applications where samples are taken from the ground, generally in the root zone. Use of these rapid remote sensing techniques allow for more detailed and economic data acquisition than older cumbersome sampling and wet chemistry testing methods used in the past by soil scientists for soil nutrient evaluations.5.2 This test method describes procedures for sampling and testing of field soils using diffuse reflectance spectrometry using handheld portable spectrometers measuring spectra in visible and near infrared (vis-NR) using dried sieved or wet samples. There is a worldwide effort to collect spectral databases of soils. The procedures specified here follow procedures as outlined in the United Nations Food and Agricultural Organization (FAO) primer on Vis-NIR and MIR spectroscopy of soils (1)3. Other organizations such as IEEE are actively working on additional guidance documents that will be incorporated in future revisions of this test method.5.2.1 This standard describes the procedures (Section 12) for using hyperspectral sensor data to measure moisture content as a percentage, pH, Organic Matter (OM) as a percentage, Cation Exchange Capacity (CEC) measured in 10 cmol c /kg could hold 10 cmol of Na + cations (with 1 unit of charge per cation) per kilogram of soil, but only 5 cmol Ca 2+ (2 units of charge per cation), as well as micro and macro nutrients in soils measured in PPM (parts per million)or a percentage, including, but not limited to nitrogen, phosphorous, potassium, boron, zinc, iron, sulfur, calcium, magnesium, and manganese.5.2.2 Research has shown that the Vis-NIR data for OM content is as accurate as other tests such as the burn off test in Test Methods D2974 (2). Analysis of natural moisture samples using method B can provide faster testing and better estimates of OM are normalization for moisture (3). Wet sampling allows for many more samples to be rapidly scanned in the field and therefore more samples and more detailed coverage of the site.5.3 This standard does not address sensors that measure in the mid infrared range, MIR, are more expensive and there is less spectral data available. MIR spectral analysis is performed on dried samples that are finely grinded (4). MIR modeling requires a high level of calibration against recognized laboratory procedures and physical properties.5.4 Spectral data can differ from older reference tests typically based on wet chemistry methods such as pore fluid extractions such as those outlined in soil survey manuals (5). These old methods require extensive labor costs and long turnaround times. However, soil scientists are accumulating large databases of spectral libraries which have been checked and calibrated with baseline chemical data. The soil survey manual (5) also has early (2014) procedures for Vis-NIR testing methods on dry specimens.5.5 The accuracy of the measurement is determined by the accuracy of the calibration of the baseline measurements that are calibrated by chemical processing. On critical/new projects the sampling plan may include samples for wet chemistry testing to help calibrate the site model. The large amount of data that is collected at a site is combined into a site-specific database which is subject to complex model training to optimize the dataset. This standard will not provide detailed guidance on modeling and the FAO document (1) provides a good overview of the current procedures for dataset modeling. Dataset modeling requires adjustments for texture, water content, and geology and generally is linked to other appropriate spectral libraries available from many sources (6).5.5.1 Horizon and Soil taxonomic order as auxiliary variables improve prediction accuracy of models. Regional, local, and past site-specific data, and taxonomic historic data base libraries may be used to help calibrate a site model.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method describes procedures for sampling and testing of soils obtained from ground-based samples using diffuse reflectance spectrometry using handheld portable spectrometers measuring spectra in visible and near infrared (vis-NR) and mid-infrared (MIR) range. The sensor can measure moisture content, PH, organic matter, Cation Exchange Capacity (CEC) as well as macro and micro elemental nutrients in parts per million (PPM) or percentage, including but not limited to nitrogen, phosphorous, potassium, zinc, iron, boron, sulfur, calcium, magnesium, and manganese.1.2 There are two methods that can be used to perform the test.1.2.1 Method A—The analysis is performed in the laboratory on the sample after the sample has been oven dried and sieved.1.2.2 Method B—The analysis is performed in the field on a moist sample after homogenization. After post-processing of multiple reflectance site data using methods A and B, the moisture content can be measured, and the spectral signature is normalized for moisture content.1.3 The limitation of this method is that the results of an individual test for elemental analysis would not be the same as exacting reference values from traditional wet chemical lab analysis used by soil scientists. Results of wet chemistry tests or tests from soil science libraries may be used to calibrate a specific site model comprised of many individual tests. Spectral data for organics has shown to be as accurate as conventional methods such as Test Methods D2974.1.4 For soil nutrient analysis the sample is not finely ground as in typical qualitative spectral analysis as outlined in standard Practice E1252. The spectrometer is checked periodically during testing using procedures in accordance with Guide E1866 performance testing.1.5 Moisture content is a preferred term in agricultural applications. For this standard, gravimetric water content may be measured in accordance with Test Methods D2216 when drying samples and used to calibrate the site model, but the overall results of spectral analysis are more qualitative, and the term Moisture Content is used in this standard.1.6 Units—The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. Wavelengths are stated only in nanometers, nm. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. The procedures used to specify how data is collected, recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.7.1 Spectral data is acquired by electrical data acquisition systems and therefore numeric data is carried through recording and into databases without rounding of numeric data.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is useful for preparing extracts from fire debris for later analysis by gas chromatography mass spectrometry.4.2 This is a very sensitive separation procedure, capable of isolating quantities smaller than 1/10 μL of ignitable liquid residue from a sample.1.1 This practice describes the procedure for separation of small quantities of ignitable liquid residues from samples of fire debris using an adsorbent material to extract the residue from the static headspace above the sample, then eluting the adsorbent with a solvent.1.2 While this practice is suitable for successfully extracting ignitable liquid residues over the entire range of concentration, the headspace concentration methods are best used when a high level of sensitivity is required due to a very low concentration of ignitable liquid residues in the sample.1.2.1 Unlike other methods of separation and concentration, this practice is essentially nondestructive.1.3 Alternate separation and concentration procedures are listed in the referenced documents (see Practices E1386, E1388, E1413, and E2154).1.4 This practice does not replace knowledge, skill, ability, experience, education, or training and should be used in conjunction with professional judgment.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The demand for SPF insulation in homes and commercial buildings has increased as emphasis on energy efficiency increases. In an effort to protect the health and safety of both trade workers and building occupants due to the application of SPF, it is essential that reentry/reoccupancy-times into the structure where SPF has been applied, be established.5.2 Concentrations of chemical emissions determined in large-scale ventilated enclosure studies conducted by this practice may be used to generate source emission terms for IAQ models.5.3 The emission factors determined using this practice may be used to evaluate comparability and scalability of emission factors determined in other environments.5.4 This practice was designed to determine emission factors for chemicals emitted by SPF insulation in a controlled room environment.5.5 New or existing formulations may be sprayed, and emissions may be evaluated by this practice. The user of this practice is responsible for ensuring analytical methods are appropriate for novel compounds present in new formulations (see Appendix X1 for target compounds and generic formulations).5.6 This practice may be useful for testing variations in emissions from non-ideal applications. Examples of non-ideal applications include those that are off-ratio, applied outside of recommended range of temperature and relative humidity, or applied outside of manufacturer recommendations for thickness.5.7 The determined emission factors are not directly applicable to all potential real-world applications of SPF. While this data can be used for VOCs to estimate indoor environmental concentrations beyond three days, the uncertainty in the predicted concentrations increases with increasing time. Estimating longer term chemical concentrations (beyond three days) for SVOCs is not recommended unless additional data (beyond this practice) is used, see (1).45.8 During the application of SPF, chemicals deposited on the non-applied surfaces (for example, floors and ceilings) are the result of both gaseous phase emissions from the SPF and overspray. It is difficult to separate these two processes with current analytical methods. At present, the difference in how these two processes impact the long-term emissions is not known. This practice combines these two processes to generate data for modeling inputs.1.1 This practice describes procedures for measuring the chemical emissions of volatile and semi-volatile organic compounds (VOCs and SVOCs) from spray polyurethane foam (SPF) insulation samples in a large-scale ventilated enclosure.1.2 This practice is used to identify emission rates and factors during SPF application and up to three days following application.1.3 This practice can be used to generate emissions data for research activities or modeled for the purpose to inform potential reentry and reoccupancy times. Potential reentry and re-occupancy times only apply to the applications that meet manufacturer guidelines and are specific to the tested formulation.1.4 This practice describes emission testing at ambient room and substrate temperature and relative humidity conditions recognizing chemical emissions may differ at different room and substrate temperatures and relative humidity.1.5 This practice does not address all SPF chemical emissions. This practice addresses specific chemical compounds of potential health and regulatory concern including methylene diphenyl diisocyanate (MDI), polymeric MDI (MDI oligomeric polyisocyanates mixture), flame retardants, aldehydes, and VOCs including blowing agents, and catalysts. Although specific chemicals are discussed in this practice, other chemical compounds of interest can be quantified (see target compound and generic formulation list in Appendix X1). Other chemical compounds used in SPF such as polyols, emulsifiers, and surfactants are not addressed by this practice. Particulate sizing and distribution are also outside the scope of this practice.1.6 Emission rates during application are determined from air phase concentration measurements that may include particle bound chemicals. SVOC deposition to floors and ceilings is also quantified for post application modeling inputs. SVOC emission rates should only be used for modeling purposes for the duration of data collection.1.7 Four quantification methods are described for isocyanates. The method chosen should consider safety issues such as flammability, the expected concentration, the presence of isocyanate aerosol during the phase of interest (during and post application), and if the tested SPF is high or low pressure.1.8 This practice references similar standard practices for design, construction, performance evaluation, and use of full-scale chambers for chemical emission testing.1.9 This practice references methods for the collection and analysis of air samples.1.10 This practice applies to two-component open cell and closed cell SPF insulation system formulations that are processed using high-pressure or low-pressure installation processing practices and equipment.1.11 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. The application of SPF in a ventilated enclosure has the potential to generate a hazardous condition putting the individual responsible for spraying inserts at risk. It is the responsibility of the user of this standard to establish appropriate health and safety procedures and require appropriate certified personal protective equipment (PPE) to minimize chemical exposure. Individuals entering the ventilated enclosure during and after SPF application, for any amount of time, are expected to wear appropriate PPE.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice is useful for preparing extracts from fire debris for subsequent qualitative analysis by gas chromatography mass spectrometry, see Test Method E1618.5.2 The sensitivity of this practice is such that a sample consisting of a laboratory tissue onto which as little as 0.1 µL of ignitable liquid has been deposited, in an otherwise empty sample container, will result in an extract that is sufficient for identification and classification using Test Method E1618 (1).5.2.1 Recovery from fire debris samples will vary, depending on factors including debris temperature, adsorbent temperature, container size, adsorptive material, headspace volume, sampling time and flow rate, and adsorptive competition from the sample matrix (2).5.3 The principal concepts of dynamic headspace concentration are similar to those of static headspace concentration (Practice E3189). The dynamic headspace concentration technique can be more sensitive than the static headspace concentration technique. However, sample containers subjected to dynamic headspace concentration could be unsuitable for re-sampling.5.3.1 Dynamic headspace concentration alters the original composition of the test sample because a portion of the original headspace from the sample container is removed and exchanged with dry inert gas or air. A portion of the concentrated headspace sample should be preserved for potential future analysis, if possible and if required, in accordance with Practice E2451.5.4 Common solid adsorbent/desorption procedure combinations in use are activated carbon/solvent elution, and Tenax4 TA/thermal desorption.5.5 Solid adsorbent/desorption procedure combinations not specifically described in this standard can be used as long as the practice has been validated as outlined in Section 11.1.1 This practice describes the procedure for separation of ignitable liquid residues from fire debris samples using dynamic headspace concentration onto an adsorbent tube, with subsequent solvent elution or thermal desorption.1.2 Dynamic headspace concentration onto an adsorbent tube takes place from a closed, rigid sample container (typically a metal can), using a source of dry inert gas or a vacuum system.1.3 Both positive and negative applied pressure systems for dynamic headspace concentration onto an adsorbent tube are illustrated and described.1.4 This practice is suitable for preparing extracts from fire debris samples containing a range of volumes (µL to mL) of ignitable liquid residues, with sufficient recovery for subsequent qualitative analysis (1).21.5 Alternative headspace concentration methods are listed in Section 2 (see Practices E1388, E1412, E3189, and E2154).1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard cannot replace knowledge, skills, or abilities acquired through education, training, and experience (Practice E2917) and is to be used in conjunction with professional judgment by individuals with such discipline-specific knowledge, skills, and abilities.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
160 条记录,每页 15 条,当前第 2 / 11 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页