微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Corrosion products, in the form of particulate and dissolved metals, in the steam and water circuits of electricity generating plants are of great concern to power plant operators. Aside from indicating the extent of corrosion occurring in the plant, the presence of corrosion products has deleterious effects on plant integrity and efficiency. Deposited corrosion products provide sites at which chemicals, which are innocuous at low levels, may concentrate to corrosive levels and initiate under-deposit corrosion. Also, corrosion products in feedwater enter the steam generating components where deposition on heat transfer surfaces reduces the overall efficiency of the plant.5.2 Most plants perform some type of corrosion product monitoring. The most common method is to sample for long time periods, up to several days, after which laboratory analysis of the collected sample gives the average corrosion product level over the collection time period. This methodology is referred to as integrated sampling. With the more frequent measurements in the on-line monitor, a time profile of corrosion product transport is obtained. Transient high corrosion product levels can be detected and measured, which cannot be accomplished with integrated sampling techniques. With this newly available data, plant operators may begin to correlate periods of high corrosion product levels with controllable plant operating events. In this way, operators may make more informed operational decisions with respect to corrosion product generation and transport.1.1 This test method covers the operation, calibration, and data interpretation for an on-line corrosion product (metals) monitoring system. The monitoring system is based on x-ray fluorescence (XRF) analysis of metals contained on membrane filters (for suspended solids) or resin membranes (for ionic solids). Since the XRF detector is sensitive to a range of emission energy, this test method is applicable to simultaneous monitoring of the concentration levels of several metals including titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, mercury, lead, and others in a flowing sample. A detection limit below 1 ppb can be achieved for most metals.1.2 This test method includes a description of the equipment comprising the on-line metals monitoring system, as well as, operational procedures and system specifications.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification describes the required properties and test methods for a one or two-component, cold liquid-applied elastomeric-type membrane comprised of silyl-terminated polyether polymer, silyl-terminated polyurethane polymer, or a blend of the two polymers for waterproofing building decks and walls subjected to hydrostatic pressure in building areas to be occupied by personnel, vehicles, or equipment. This specification applies only to a membrane system that will be covered with a separate wearing course, traffic course, or backfill.NOTE 1: See Guides C898/C898M and C1471/C1471M for proper application of membrane.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Methods such as D3273 Standard Test Method for Resistance to Growth of Mold on the Surface of Interior Coatings in an Environmental Chamber and D3274 Standard Test Method for Evaluating the Degree of Surface Disfigurement of Paint Films by Fungal or Algal Growth or Soil or Dirt Accumulation provide means for assessing mold and algal staining on paints.5.2 This test method provides a technique for evaluating antimicrobials in or on polymeric solids against staining by Streptomyces species, bacteria and should assist in the prediction of performance of treated articles under actual field conditions.5.3 Conditioning of the specimens, such as exposure to leaching, weathering, and heat treatment, may have significant effects on performance of antimicrobials against staining. Determination of these effects is not included in this test method.1.1 This test method is intended to assess susceptibility of flat two dimensional vinyl films and other solid polymer products as well as products that may directly contact vinyl to pink-staining by the actinomycete bacteria Streptomyces species. This test method may not be suitable for highly textured or porous substrates.1.2 This test method is not suitable for evaluating dark-pigmented test samples.1.3 A knowledge of microbiological techniques is recommended for these procedures.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This guide is divided into two sections which provide design and specification guidelines for the use of a cold liquid-applied elastomeric membrane with integral wearing surface for waterproofing building decks in building areas to be occupied by personnel, vehicles, or equipment.4.2 The intent of Sections 5 – 11, Design Considerations, is to provide information and design guidelines where a waterproofing membrane with integral wearing surface is to be used. The intent of the remaining sections is to provide minimum guide specifications for the use of the purchaser and the seller in contract documents.4.3 Where the state of the art is such that criteria for a particular condition is not as yet firmly established or has numerous variables that require consideration, reference is made to the applicable portion of Sections 5 – 11 that covers the particular area of concern. Section 16 describes the repair, rehabilitation, and replacement of the membrane.1.1 This guide describes the design and installation of cold liquid-applied elastomeric waterproofing membrane systems that have an integral wearing surface. The cold liquid-applied elastomeric waterproofing membrane (membrane) to which this guide refers is specified in Specification C957/C957M.1.2 Concrete Slab-on-Grade—Waterproofing the upper surface of a concrete slab-on-grade presents special problems due to the possibility of negative hydrostatic pressure causing loss of bond to the substrate. Consideration of these problems is beyond the scope of this guide. Consult the membrane manufacturer for recommendations when this situation exists.1.3 The committee having jurisdiction for this guide is not aware of any similar ISO standard.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 15.4.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method may be used as an aid to design geotextile container systems that contain fine-grained, high water content slurries such as dredged materials to meet special environmental or operational requirements. This test is often used to demonstrate the efficacy of geotextile dewatering to regulatory agencies in determining the amount of dredged material sediment passing through a geotextile and the flow rate for specific high water content materials.5.2 The designer can use this test method to assess the quantity of fine-grained dredged material sediment that may pass through the geotextile container into the environment.5.3 This test method is intended for evaluation of a specific material, as the results will depend on the specific high water content slurry and geotextile evaluated and the location of the geotextile container below or above water. It is recommended that the user or a design representative perform the test because geotextile manufacturers are not typically equipped to handle or test fine-grained slurries.5.4 This test method provides a means of evaluating geotextile containers with different dredged materials or high water content materials under various conditions. The number of times this test is repeated depends on the users and the test conditions.5.5 This test method may not simulate site conditions and the user is cautioned to carefully evaluate how the results are applied.1.1 This test method is used to determine the flow rate of water and suspended solids through a geosynthetic permeable closed bag used to contain high water content slurry such as dredged material.1.2 The results for the water and sediment that pass through the geotextile bag are shown as liters of water per time period, and the percent total suspended solids in milligrams per liter or parts per million.1.3 The flow rate is the average rate of passage of a quantity of solids and water through the bag over a specific time period.1.4 This test method requires several pieces of specified equipment such as an integrated water sampler, analytical balance, geotextile bag, stand clear PVC pipes, testing frame, and clean containers to collect the decant water and a representative sample of high water content material from the proposed dredge area or slurry source.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Moisture is a ubiquitous and variable component of any biomass sample. Moisture is not considered a structural component of biomass and can change with storage and handling of biomass samples. The determination of the total solids content allows for the correction of biomass samples to an oven-dried solids mass that is constant for a particular sample.4.2 This procedure is not suitable for biomass samples that visibly change on heating to 105 °C, for example, unwashed acid-pretreated biomass still containing free acid.4.3 Some materials that contain large amount of free sugars or proteins will caramelize or brown under direct infrared heating elements used in Test Method B. Total solids in these materials should be done by Test Method A.1.1 This test method covers the determination of the amount of total solids remaining after drying a sample. Materials suitable for this procedure include samples prepared in accordance with Practice E1757 and extractive-free material prepared in accordance with Test Method E1690. For particulate wood fuels, Test Method E871 should be used.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This guide is intended to aid device fabricators in the selection of proper commercially available polyurethane solids and solutions for their application.4.2 The polyurethanes covered by this guide may be thermoformed or solution cast into biomedical devices for use as surgical aids or for implantation as determined to be appropriate, based on supporting biocompatibility and physical test data.1.1 This guide covers the evaluation of thermoplastic polyurethanes in both solid and solution form for biomedical applications. The polymers have been reacted to completion and require no further chemical processing.1.2 The tests and methods listed in this guide may be referenced in specifications containing minimum required values and tolerances for specific end-use products.1.3 Standard tests for biocompatibility are included to aid in the assessment of safe utilization in biomedical applications. Compliance with these criteria shall not be construed as an endorsement of implantability. Since many compositions, formulations, and forms of thermoplastic polyurethanes in solid and solution forms are within this material class, the formulator or fabricator must evaluate the biocompatibility of the specific composition or form in the intended use and after completion of all manufacturing processes including sterilization.1.4 Purchase specifications may be prepared by agreement between the buyer and seller by selection of appropriate tests and methods from those listed applicable to the specific biomedical end use.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Reliable, controlled flow of bulk solids from bins and hoppers is essential in almost every industrial facility. Unfortunately, flow stoppages due to arching and ratholing are common. Additional problems include uncontrolled flow (flooding) of powders, segregation of particle mixtures, useable capacity which is significantly less than design capacity, caking and spoilage of bulk solids in stagnant zones, and structural failures.5.2 By measuring the flow properties of bulk solids, and designing bins and hoppers based on these flow properties, most flow problems can be prevented or eliminated.5.3 For bulk solids with a significant percentage of particles (typically, one third or more) finer than about 6 mm, the cohesive strength is governed by the fines (-6-mm fraction). For such bulk solids, cohesive strength and wall friction tests may be performed on the fine fraction only.NOTE 1: The quality of the result produced by this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors. Practice D3740 was developed for agencies engaged in the testing and/or inspection of soil and rock. As such it is not totally applicable to agencies performing this test method. However, users of this test method should recognize that the framework of Practice D3740 is appropriate for evaluating the quality of an agency performing this test method. Currently there is no known qualifying national authority that inspects agencies that perform this test method.1.1 This method 2covers the apparatus and procedures for measuring the cohesive strength of bulk solids during both continuous flow and after storage at rest. In addition, measurements of internal friction, bulk density, and wall friction on various wall surfaces are included.1.2 This standard is not applicable to testing bulk solids that do not reach the steady state requirement within the travel limit of the shear cell. It is difficult to classify ahead of time which bulk solids cannot be tested, but one example may be those consisting of highly elastic particles.1.3 The most common use of this information is in the design of storage bins and hoppers to prevent flow stoppages due to arching and ratholing, including the slope and smoothness of hopper walls to provide mass flow. Parameters for structural design of such equipment also may be derived from this data.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measure are included in this standard1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method provides measurements that can be used to describe the bulk properties of a powder or granular material.5.2 The measurements can be combined with practical experience to provide relative rankings of various forms of bulk handling behavior of powders and granular materials for a specific application.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors. Practice D3740 was developed for agencies engaged in the testing or inspection (or both) of soil and rock. As such it is not totally applicable to agencies performing this standard. However, users of this standard should recognize that the framework of Practice D3740 is appropriate for evaluating the quality of an agency performing this standard. Currently there is no known qualifying national authority that inspects agencies that perform this standard.1.1 This test method covers an apparatus and procedures for measuring properties of bulk solids, henceforth referred to as Carr Indices.21.2 This test method is suitable for free flowing and moderately cohesive powders and granular materials up to 2.0 mm [1/16 in.] in size. Materials must be able to pour through a 6.0 to 8.0-mm [1/4 to 5/16 in.] diameter funnel outlet when in an aerated state.1.3 This method consists of eight measurements and two calculations for Carr Indices as follows. Each measurement, or calculation, or combination of them, can be used to characterize the properties of bulk solids.1.3.1 Measurement of Carr Angle of Repose1.3.2 Measurement of Carr Angle of Fall1.3.3 Calculation of Carr Angle of Difference1.3.4 Measurement of Carr Loose Bulk Density1.3.5 Measurement of Carr Packed Bulk Density1.3.6 Calculation of Carr Compressibility1.3.7 Measurement of Carr Cohesion1.3.8 Measurement of Carr Uniformity1.3.9 Measurement of Carr Angle of Spatula1.3.10 Measurement of Carr Dispersibility1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives: and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method may be used as an aid to design geotextile container systems that contain fine-grained, high water content slurries such as dredged materials to meet special environmental or operational requirements. This test is often used to demonstrate the efficacy of geotextile dewatering to regulatory agencies in determining the amount of dredged material sediment passing through a geotextile and the flow rate for specific high water content materials.The designer can use this test method to assess the quantity of fine-grained dredged material sediment that may pass through the geotextile container into the environment.This test method is intended for evaluation of a specific material, as the results will depend on the specific high water content slurry and geotextile evaluated and the location of the geotextile container below or above water. It is recommended that the user or a design representative perform the test because geotextile manufacturers are not typically equipped to handle or test fine-grained slurries.This test method provides a means of evaluating geotextile containers with different dredged materials or high water content materials under various conditions. The number of times this test is repeated depends on the users and the test conditions.This test method may not simulate site conditions and the user is cautioned to carefully evaluate how the results are applied.1.1 This test method is used to determine the flow rate of water and suspended solids through a geosynthetic permeable bag used to contain high water content slurry such as dredged material.1.2 The results for the water and sediment that pass through the geotextile bag are shown as liters of water per time period, and the percent total suspended solids in milligrams per liter or parts per million.1.3 The flow rate is the average rate of passage of a quantity of solids and water through the bag over a specific time period.1.4 This test method requires several pieces of specified equipment such as an integrated water sampler, analytical balance, geotextile container, frame to hold the geotextile container, and clean containers to collect the decant water and a representative sample of high water content material from the proposed dredge area or slurry source.1.5 The values stated in SI units are to be regarded as the standard. The values in parentheses are provided for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D3028-95 Standard Test Method for Kinetic Coefficient of Friction of Plastic Solids (Withdrawn 2000) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This test method covers the determination of sliding (kinetic) friction of plastic solids or sheeting (as moving specimens) when sliding against similar or dissimilar substances (Note 1) (as fixed specimens) through the speed range of approximately 0.10 to 3.00 m/s. The instrument used is a variable speed, variable normal-force frictionometer. , Note 1-The physical form for these fixed specimens should be that of rigid or self-supporting solids. Attempts to mount thin sheeting, film, foil, etc., are not recommended due to the difficulty encountered when attempting to meet the weight and concentricity requirements (see 4.1.1). 1.2 Rigid or self-supporting specimens must be machined to specified dimensions. Normally, sheeting exceeding 1.00 mm (0.040 in.) in thickness should not be tested on a mounting wheel of standard diameter. Note 2-An error accumulation of 1% per 0.50 mm (0.020 in.) of sheeting thickness results as the standard diameter of the test surface is increased. If the resulting error is not tolerable, undersize mounting wheels can be employed. 1.3 Two testing procedures are included. Selection of a procedure is determined by the specific interests of the investigator. The procedures are: 1.3.1 Procedure A -Determination of variable-velocity kinetic coefficients, and 1.3.2 Procedure B -Determination of constant-velocity kinetic coefficients over an extended period of time. 1.4 Test data obtained by this test method is relevant and appropriate for use in engineering design. 1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use .

定价: 0元 / 折扣价: 0

在线阅读 收 藏

All of the methods provided involve comparisons between the spectra or chromatograms of the reference and test samples to determine if they show significant differences. It is not possible at this time to establish quantitative limits as a guide to whether a spectral or chromatographic difference is truly significant. Certainly the presence or absence of a moderate or strong peak in the test sample which is not evident in the reference is significant. A persistent difference in the ratios of two peaks of one spectrum as compared to the reference sample is significant. On the whole, some judgment must be exercised in this respect and it is advisable to refer to published data on infrared or gas chromatography in order to establish, where feasible, the possible overall nature of the adulterant or its functional group which might be causing the comparison spectra to differ.Method A is rapid and the most convenient of the procedures given. It should be utilized first in order to detect nonuniformity of the test sample. Significant spectral differences from that of the reference sample can be taken as an indication of adulteration and in such cases the use of the other methods is not necessary. As a general rule. Method A is sufficient to detect gross or major adulteration of the vehicle solids. However, where Method A shows no significant spectral differences, it cannot be assumed that the test sample is completely acceptable since changes in the type of drying oil, polyol, and certain dibasic acids in alkyd resins, addition of certain aliphatic or nonfunctional hydrocarbon resins, and many minor adulterations may not always show characteristic infrared spectral differences. Therefore, in such cases it is best to proceed to additional tests as given in Methods B and C or else alternatively directly to Method D.Method B is useful in detecting adulterations that are unsaponifiable or else have an unsaponifiable component that has escaped detection in Method A only because the adulterant may have been small in amount and therefore its strong spectral peaks may have been masked over by the rest of the vehicle solids. Some care should be taken in interpreting spectral differences in Method B to avoid an erroneous conclusion that the test sample is unacceptable because its spectrum is different. Apparent but unreal differences can occur as a result of incomplete saponification, failure to remove all saponifiable material, and varying degrees of contamination of the unsaponifiable fraction with sterols, etc., present in the vehicle solids. After it has thus been firmly established that a real spectral difference does exist, further tests are unnecessary, except that it is wise to resort again to the published literature on infrared to attempt to identify the possible nature of the adulterant. Where Methods A and B indicate acceptability of the test sample, it is still not always possible to rule out adulteration caused by changes or modifications in the saponifiable portion, that is, the type of fatty acid, dibasic acids, and polyol. In such cases, it is best to continue on to Method C for determination of the oil acids, and to other gas chromatographic methods for the polyol and dibasic acids when such equipment is available.Method C is extremely sensitive in detecting adulterations and changes that have been made in the oil or fatty acid portion of the vehicle solids. It can, for example, detect whether linseed, coconut, oiticica, etc., has been substituted for soya oil and vice versa, or whether fish or tall oil has partially or wholly replaced some other drying oil, etc. Consequently, when the results of Methods A and B suggest that the test sample is acceptable and where a drying oil component is known to be present, Method C should be used additionally for more complete assurance of product uniformity. Where the results from Method C along with those from Methods A and B indicate product uniformity, it is a fairly safe assumption that the product has not been significantly altered.Method D is intended as an alternative to Methods B and C and where the results from Method A indicate apparent product acceptability. Method D, by the use of quantitative ultraviolet spectral absorbance data, is an extremely sensitive procedure for the detection of complete or even partial adulteration of the test sample. However, considerable caution must be exercised in the preliminary pre-drying of the vehicle solids since it is at this stage that the components are extremely sensitive to oxidative changes. Even minor oxidative changes can seriously affect the absorbance data obtained in ultraviolet spectral analysis and may give an impression that the two samples being compared are different when in fact they are the same. When these considerations are provided for, and the comparison spectra are identical in Method D as well as in Method A, then it can be assumed that the sample is acceptable. Significant differences in the spectra from Method D would indicate nonuniformity of the product even though Method A may fail to reveal such nonuniformity.1.1 These practices provide general information on the instrumental techniques available for detecting adulteration or nonuniformity of the chemical nature of the vehicle solids in purchased lots of traffic paints by means of the individual or combined use of infrared and ultraviolet spectroscopy and gas chromatography. The procedures given are applicable when traffic paint is selected and purchased on the basis of pre-qualification laboratory or road performance tests, or both, and a reference sample of the original paint so evaluated and selected is retained and compared with test samples representative of subsequent purchased and delivered lots of such paint and which are required to be the same as the original reference sample.1.2 Although not specifically provided for in these practices, the methods given may also be applied, with appropriate modification, to evaluating the acceptability of traffic paints that have been purchased on the basis of composition specifications. In such cases, application is limited to the vehicle solids as before, as well as the availability of a suitable standard or range of standards representative of the vehicle solids that are acceptable and with which samples of subsequent delivered lots will be compared.1.3 The techniques provided are wholly adequate for detecting gross adulteration of the vehicle solids where completely different drying oils, resins, or polymers, or combinations of these have been substituted for those originally contained in the reference sample. In cases of lesser adulteration or modification, these methods have been found adequate for detecting vehicle solids, adulterations, or modifications as low as 5 weight % of the vehicle solids.1.4 These techniques have been developed on the basis of cooperative work with alkyd, chlorinated rubber-alkyd, and poly(vinyl toluene) type paints involving the detection of nonuniformity when such extraneous materials as rosin, fish oil, hydrocarbon resin, and chlorinated paraffin have been added. The procedures given may be, but are not necessarily completely applicable to all other types of vehicle solids or extraneous additions, or both.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The data from this test can be used to estimate the bulk density of materials in bins and hoppers and for material handling applications such as feeders.5.2 The test results can be greatly affected by the sample selected for testing. For meaningful results it is necessary to select a representative sample of the particulate solid with respect to moisture (water) content, particle-size distribution and temperature. For the tests an appropriate size sample should be available, and fresh material should be used for each individual test specimen.5.3 Initial bulk density, (ρb)initial, may or may not be used as the minimum bulk density. This will depend on the material being tested. For example, the two are often close to the same for coarse (most particles larger than about 6 mm), free-flowing bulk solids, but not for fine, aeratable powders.5.4 Bulk density values may be dependent upon the magnitude of the applied mass increments. Traditionally, the applied mass is doubled for each increment resulting in an applied mass increment ratio of 1. Smaller than standard increment ratios may be desirable for materials that are highly sensitive to the applied mass increment ratio. An example of the latter is a material whose bulk density increases 10% or more with each increase in applied mass.5.5 Bulk density values may be dependent upon the duration of each applied mass. Traditionally, the duration is the same for each increment and equal to 15 s. For some materials, the rate of compression is such that complete compression (no change in volume with time at a given applied compressive stress) will require significantly more than 15 s.NOTE 1: The quality of the result produced by this standard is dependent on the competence of personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors. Practice D3740 was developed for agencies engaged in the testing or inspection (or both) of soil and rock. As such it is not totally applicable to agencies performing this standard. However, users of this standard should recognize that the framework of Practice D3740 is appropriate for evaluating the quality of an agency performing this standard. Currently there is no known qualifying national authority that inspects agencies that perform this standard.1.1 This test method covers an apparatus and procedure for determining a range of bulk densities of powders and other bulk solids as a function of compressive stress.1.2 This test method should be performed in the laboratory under controlled conditions of temperature and humidity.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives, and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measure are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the filter-retained solids (grit) content of polymeric latex vehicles, that is, material present in a latex specimen that is retained on a 200-mesh screen. 1.2 The values stated in SI units are to be regarded as standard. 1.3 This standard does not purport to address the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is used to determine the proportion of the total solids which are soluble solids and that proportion which are insoluble solids in a solution of tannin extract or in the water extract from raw or spent materials prepared for tannin analysis.5.2 The specimens are aliquots from the analytical solutions prepared from tannin extracts or the water extract solutions prepared from raw or spent materials.5.3 The soluble solids are defined as the portion of the total solids which are dissolved in the water and pass through a filter prepared by depositing a layer of Kaolin paste onto a standard filter paper.5.4 The insolubles are defined as the portion of the total solids which do not pass through the standard filter paper prepared with the layer of Kaolin paste.5.5 The results of this test method are dependent on a great many variables but particularly upon:5.5.1 The temperature conditions under which the solutions were prepared and stored and the temperature at which the current analysis is performed;5.5.2 The uniformity and consistency of the Kaolin paste layer deposited onto the filter paper;5.5.3 The rate of solution run-out from the pipette; etc. It is, therefore, essential that the method be followed exactly in order to obtain reproducible results both among specimens within a laboratory and for analyses between laboratories.1.1 This test method is intended for use in determining the quantity of soluble solids and insolubles in solutions of tannin extracts, water extracts of vegetable tanning materials, or tanning liquors. This test method is applicable to the analysis of liquid, solid, pasty, and powdered tannin extracts and to the water extracts of raw or spent materials.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 618元 / 折扣价: 526 加购物车

在线阅读 收 藏
65 条记录,每页 15 条,当前第 3 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页