微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Pyrolysis liquid can be produced to various char concentrations. Increasing pyrolysis solids content can affect the pyrolysis liquid biofuel handling, atomization and storage stability in a negative manner.1.1 This test method describes a filtration procedure for determining the pyrolysis solids content of pyrolysis liquid. It is intended for the analysis of pyrolysis liquid with all ranges of pyrolysis solids concentrations.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Material Safety Data Sheets are available for reagents and materials. Review them for hazards prior to usage. For specific warning statements, see 7.2, 7.3, and 7.4.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Corrosion products, in the form of particulate and dissolved metals, in the steam and water circuits of electricity generating plants are of great concern to power plant operators. Aside from indicating the extent of corrosion occurring in the plant, the presence of corrosion products has deleterious effects on plant integrity and efficiency. Deposited corrosion products provide sites at which chemicals, which are innocuous at low levels, may concentrate to corrosive levels and initiate under-deposit corrosion. Also, corrosion products in feedwater enter the steam generating components where deposition on heat transfer surfaces reduces the overall efficiency of the plant.5.2 Most plants perform some type of corrosion product monitoring. The most common method is to sample for long time periods, up to several days, after which laboratory analysis of the collected sample gives the average corrosion product level over the collection time period. This methodology is referred to as integrated sampling. With the more frequent measurements in the on-line monitor, a time profile of corrosion product transport is obtained. Transient high corrosion product levels can be detected and measured, which cannot be accomplished with integrated sampling techniques. With this newly available data, plant operators may begin to correlate periods of high corrosion product levels with controllable plant operating events. In this way, operators may make more informed operational decisions with respect to corrosion product generation and transport.1.1 This test method covers the operation, calibration, and data interpretation for an on-line corrosion product (metals) monitoring system. The monitoring system is based on x-ray fluorescence (XRF) analysis of metals contained on membrane filters (for suspended solids) or resin membranes (for ionic solids). Since the XRF detector is sensitive to a range of emission energy, this test method is applicable to simultaneous monitoring of the concentration levels of several metals including titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, mercury, lead, and others in a flowing sample. A detection limit below 1 ppb can be achieved for most metals.1.2 This test method includes a description of the equipment comprising the on-line metals monitoring system, as well as, operational procedures and system specifications.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification describes the required properties and test methods for a one or two-component, cold liquid-applied elastomeric-type membrane comprised of silyl-terminated polyether polymer, silyl-terminated polyurethane polymer, or a blend of the two polymers for waterproofing building decks and walls subjected to hydrostatic pressure in building areas to be occupied by personnel, vehicles, or equipment. This specification applies only to a membrane system that will be covered with a separate wearing course, traffic course, or backfill.NOTE 1: See Guides C898/C898M and C1471/C1471M for proper application of membrane.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Methods such as D3273 Standard Test Method for Resistance to Growth of Mold on the Surface of Interior Coatings in an Environmental Chamber and D3274 Standard Test Method for Evaluating the Degree of Surface Disfigurement of Paint Films by Fungal or Algal Growth or Soil or Dirt Accumulation provide means for assessing mold and algal staining on paints.5.2 This test method provides a technique for evaluating antimicrobials in or on polymeric solids against staining by Streptomyces species, bacteria and should assist in the prediction of performance of treated articles under actual field conditions.5.3 Conditioning of the specimens, such as exposure to leaching, weathering, and heat treatment, may have significant effects on performance of antimicrobials against staining. Determination of these effects is not included in this test method.1.1 This test method is intended to assess susceptibility of flat two dimensional vinyl films and other solid polymer products as well as products that may directly contact vinyl to pink-staining by the actinomycete bacteria Streptomyces species. This test method may not be suitable for highly textured or porous substrates.1.2 This test method is not suitable for evaluating dark-pigmented test samples.1.3 A knowledge of microbiological techniques is recommended for these procedures.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This guide is divided into two sections which provide design and specification guidelines for the use of a cold liquid-applied elastomeric membrane with integral wearing surface for waterproofing building decks in building areas to be occupied by personnel, vehicles, or equipment.4.2 The intent of Sections 5 – 11, Design Considerations, is to provide information and design guidelines where a waterproofing membrane with integral wearing surface is to be used. The intent of the remaining sections is to provide minimum guide specifications for the use of the purchaser and the seller in contract documents.4.3 Where the state of the art is such that criteria for a particular condition is not as yet firmly established or has numerous variables that require consideration, reference is made to the applicable portion of Sections 5 – 11 that covers the particular area of concern. Section 16 describes the repair, rehabilitation, and replacement of the membrane.1.1 This guide describes the design and installation of cold liquid-applied elastomeric waterproofing membrane systems that have an integral wearing surface. The cold liquid-applied elastomeric waterproofing membrane (membrane) to which this guide refers is specified in Specification C957/C957M.1.2 Concrete Slab-on-Grade—Waterproofing the upper surface of a concrete slab-on-grade presents special problems due to the possibility of negative hydrostatic pressure causing loss of bond to the substrate. Consideration of these problems is beyond the scope of this guide. Consult the membrane manufacturer for recommendations when this situation exists.1.3 The committee having jurisdiction for this guide is not aware of any similar ISO standard.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 15.4.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method may be used as an aid to design geotextile container systems that contain fine-grained, high water content slurries such as dredged materials to meet special environmental or operational requirements. This test is often used to demonstrate the efficacy of geotextile dewatering to regulatory agencies in determining the amount of dredged material sediment passing through a geotextile and the flow rate for specific high water content materials.5.2 The designer can use this test method to assess the quantity of fine-grained dredged material sediment that may pass through the geotextile container into the environment.5.3 This test method is intended for evaluation of a specific material, as the results will depend on the specific high water content slurry and geotextile evaluated and the location of the geotextile container below or above water. It is recommended that the user or a design representative perform the test because geotextile manufacturers are not typically equipped to handle or test fine-grained slurries.5.4 This test method provides a means of evaluating geotextile containers with different dredged materials or high water content materials under various conditions. The number of times this test is repeated depends on the users and the test conditions.5.5 This test method may not simulate site conditions and the user is cautioned to carefully evaluate how the results are applied.1.1 This test method is used to determine the flow rate of water and suspended solids through a geosynthetic permeable closed bag used to contain high water content slurry such as dredged material.1.2 The results for the water and sediment that pass through the geotextile bag are shown as liters of water per time period, and the percent total suspended solids in milligrams per liter or parts per million.1.3 The flow rate is the average rate of passage of a quantity of solids and water through the bag over a specific time period.1.4 This test method requires several pieces of specified equipment such as an integrated water sampler, analytical balance, geotextile bag, stand clear PVC pipes, testing frame, and clean containers to collect the decant water and a representative sample of high water content material from the proposed dredge area or slurry source.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Moisture is a ubiquitous and variable component of any biomass sample. Moisture is not considered a structural component of biomass and can change with storage and handling of biomass samples. The determination of the total solids content allows for the correction of biomass samples to an oven-dried solids mass that is constant for a particular sample.4.2 This procedure is not suitable for biomass samples that visibly change on heating to 105 °C, for example, unwashed acid-pretreated biomass still containing free acid.4.3 Some materials that contain large amount of free sugars or proteins will caramelize or brown under direct infrared heating elements used in Test Method B. Total solids in these materials should be done by Test Method A.1.1 This test method covers the determination of the amount of total solids remaining after drying a sample. Materials suitable for this procedure include samples prepared in accordance with Practice E1757 and extractive-free material prepared in accordance with Test Method E1690. For particulate wood fuels, Test Method E871 should be used.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Coefficients of linear expansion are required for design purposes and are used particularly to determine thermal stresses that can occur when a solid artifact composed of different materials may fail when it is subjected to a temperature excursion(s).5.2 Many new composites are being produced that have very low thermal expansion coefficients for use in applications where very precise and critical alignment of components is necessary. Push rod dilatometry such as Test Methods D696 and E228, and thermomechanical analysis methods such as Test Method E831 are not sufficiently precise for reliable measurements either on such material and systems, or on very short specimens of materials having higher coefficients.5.3 The precision of the absolute method allows for its use to:5.3.1 Measure very small changes in length;5.3.2 Develop reference materials and transfer standards for calibration of other less precise techniques;5.3.3 Measure and compare precisely the differences in coefficient of “matched” materials.5.4 The precise measurement of thermal expansion involves two parameters; change of length and change of temperature. Since precise measurements of the first parameter can be made by this test method, it is essential that great attention is also paid to the second, in order to ensure that calculated expansion coefficients are based on the required temperature difference. Thus in order to ensure the necessary uniformity in temperature of the specimen, it is essential that the uniform temperature zone of the surrounding furnace or environmental chamber shall be made significantly longer than the combined length of specimen and mirrors.5.5 This test method contains essential details of the design principles, specimen configurations, and procedures to provide precise values of thermal expansion. It is not practical in a method of this type to try to establish specific details of design, construction, and procedures to cover all contingencies that might present difficulties to a person not having the technical knowledge relating to the thermal measurements and general testing practice. Standardization of the method is not intended to restrict in any way further development of improved methodology.5.6 The test method can be used for research, development, specification acceptance and quality control and assurance.1.1 This test method covers the determination of linear thermal expansion of rigid solids using either a Michelson or Fizeau interferometer.1.2 For this purpose, a rigid solid is defined as a material which, at test temperature and under the stresses imposed by instrumentation, has a negligible creep, insofar as significantly affecting the precision of thermal length change measurements.1.3 It is recognized that many rigid solids require detailed preconditioning and specific thermal test schedules for correct evaluation of linear thermal expansion behavior for certain material applications. Since a general method of test cannot cover all specific requirements, details of this nature should be discussed in the particular material specifications.1.4 This test method is applicable to the approximate temperature range −150°C to 700°C. The temperature range may be extended depending on the instrumentation and calibration materials used.1.5 The precision of measurement of this absolute method (better than ±40 nm/(m·K)) is significantly higher than that of comparative methods such as push rod dilatometry (for example, Test Methods D696 and E228) and thermomechanical analysis (for example, Test Method E831) techniques. It is applicable to materials having low and either positive or negative coefficients of expansion (below 5 μm/(m·K)) and where only very limited lengths or thickness of other higher expansion coefficient materials are available.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The specific gravity of soil solids is used in calculating the phase relationships of soils, such as void ratio and degree of saturation.5.1.1 The specific gravity of soil solids is used to calculate the density of the soil solids. This is done by multiplying the specific gravity by the density of water at 20°C. The soil solids density is nearly independent of temperature.5.2 The term soil solids is typically assumed to mean naturally occurring mineral particles or soil like particles that are not readily soluble in water. Therefore, the specific gravity of soil solids containing extraneous matter, such as cement, lime, and the like, water-soluble matter, such as sodium chloride, and soils containing matter with a specific gravity less than one, typically require special treatment (see Note 2) or a qualified definition of their specific gravity.NOTE 2: For some soils containing a significant fraction of organic matter, kerosene is a better wetting agent than water and may be used in place of test water for oven-dried specimens. Kerosene is a flammable liquid that must be used with extreme caution. This standard should not be used when using kerosene as the test fluid.5.3 The balances, pycnometer sizes, and specimen masses are specified to obtain test results reportable to four significant digits.NOTE 3: The quality of the result produced by these test methods is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of these test methods are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.AbstractThese test methods cover the determination of the specific gravity of soil solids passing a sieve by means of a water pycnometer. Soil solids for these test methods do not include solids which can be altered by these methods, contaminated with a substance that prohibits the use of these methods, or are highly organic soil solids, such as fibrous matter which floats in water. Procedures for moist specimens such as organic soils, highly plastic fine grained soils, tropical soils, and soils containing halloysite and oven-dry specimens are provided. The apparatus is comprised of water pycnometer which shall be a stoppered flask, stoppered iodine flask, or volumetric flask; balance; drying oven; thermometer; dessicator; a system for entrapped air removal which shall be a hot plate or Bunsen burner or a vacuum pump or water aspirator; insulated container; non-corrosive smooth surface funnel; pycnometer filling tube with lateral vents; sieve; and blender with mixing blades. The specific gravity of the soil solids at the test temperature shall be calculated from the density of the soil solids and the density of water at the test temperature or from the mass of the oven dry soil solids; mass of pycnometer, water, and soil solids at the test temperature; and mass of the pycnometer and water at the test temperature. Precision and bias shall be determined to judge for the acceptability of the test results.1.1 These test methods cover the determination of the specific gravity of soil solids that pass the 3/8-in. (9.5-mm) or smaller sieve by means of the water displacement method. When the total sample contains larger particles, it is separated into a coarser and finer portion using a 3/8-in. (9.5-mm) or No. 4 (4.75-mm) or finer sieve. Separation on the No. 4 sieve is the referee method. Test Method C127 shall be used to obtain the specific gravity of the coarser portion. The D854 test methods shall be used to obtain the specific gravity of the finer portion. The total sample specific gravity is computed from the two portions as described in 12.5.1.1.1 These test methods do not apply to solids which can be altered by these methods, contaminated with a substance that prohibits the use of these methods, or are highly organic, such as fibrous matter which floats in water (see Note 1).NOTE 1: Test Method D5550 may be used to determine the specific gravity of soil solids having solids, which readily dissolve in water or float in water, or where it is impracticable to use water.1.2 This standard provides two methods for performing the specific gravity test. The method to be used shall be specified by the requesting authority, except when testing the types of soils listed in 1.2.1.1.2.1 Method A—Procedure for Moist Specimens, described in 11.1. This procedure is the preferred method. Method A shall be used for organic soils; highly plastic, fine-grained soils; tropical soils; and soils containing halloysite.1.2.2 Method B—Procedure for Oven-Dry Specimens, described in 11.2. This procedure requires less time and may be used for clean sands.1.3 Units—The values stated in SI units are to be regarded as standard, except the sieve designations. The sieve designations are identified using the “alternative” system in accordance with Practice E11, such as 3-in. and No. 200, instead of the “standard” designation of 75-mm and 75-µm, respectively. Reporting of test results in units other than SI shall not be regarded as non-conformance with this test method. The use of balances or scales recording pounds of mass (lbm) shall not be regarded as nonconformance with this standard.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.4.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Glassware under vacuum has the potential for implosion. Proper personal protective equipment shall be used at all times. See Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Biodegradation of a plastic within a high-solids anaerobic digestion unit is an important phenomenon because it will affect the decomposition of other waste materials enclosed by the plastic and the resulting quality and appearance of the digestate after an anaerobic digestion process. Biodegradation of plastics could allow for the safe disposal of these plastics through aerobic and anaerobic solid-waste-treatment plants. This procedure has been developed to permit the determination of the rate and degree of anaerobic biodegradability of plastic products when placed in a high-solids anaerobic digester for the production of digestate from municipal solid waste.5.2 Limitations—Because there is a wide variation in the construction and operation of anaerobic-digestion systems and because regulatory requirements for composting systems vary, this procedure is not intended to simulate the environment of any particular high-solids anaerobic-digestion system. However, it is expected to resemble the environment of a high-solids anaerobic-digestion process operated under optimum conditions. More specifically, the procedure is intended to create a standard laboratory environment that will permit a rapid and reproducible determination of the anaerobic biodegradability under high-solids digestion conditions.1.1 This test method covers the determination of the degree and rate of anaerobic biodegradation of plastic materials in high-solids anaerobic conditions. The test materials are exposed to a methanogenic inoculum derived from anaerobic digesters operating only on pretreated household waste. The anaerobic decomposition takes place under high-solids (more than 30 % total solids) and static non-mixed conditions.1.2 This test method is designed to yield a percentage of conversion of carbon in the sample to carbon in the gaseous form under conditions found in high-solids anaerobic digesters, treating municipal solid waste (1, 2, 3, 4).2 This test method may also resemble some conditions in biologically active landfills where the gas generated is recovered and biogas production is actively promoted by inoculation (for example, codeposition of anaerobic sewage sludge, anaerobic leachate recirculation), moisture control (for example, leachate recirculation), and temperature control (for example, short-term injection of oxygen, heating of recirculated leachate) (5, 6, 7).1.3 This test method is designed to be applicable to all plastic materials that are not inhibitory to the microorganisms present in anaerobic digesters operating on household waste.1.4 Claims of performance shall be limited to the numerical result obtained in the test and not be used for unqualified “biodegradable” claims. Reports shall clearly state the percentage of net gaseous carbon generation for both the test and reference samples at the completion of the test. Furthermore, results shall not be extrapolated past the actual duration of the test.1.5 The values given in SI units are to be regarded as the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards are given in Section 8.NOTE 1: This test method is equivalent to ISO 15985.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 A high percentage of insoluble, suspended solid material can create pumping, filtering, or grinding difficulties in the off-loading of bulk shipments of OLHW and can contribute to excessive wear on processing equipment. High solids can also decrease the quality and consistency of commingled solutions by decreasing the effectiveness of agitation in storage tanks. These issues are of concern to the recycling industries (solvents, paints, and other materials handled in significant quantities) in addition to those activities that propose to use the waste as a fuel.1.1 This test method covers the determination of the approximate amount of insoluble, suspended solid material in organic liquid hazardous waste (OLHW).1.2 This test method is intended to be used in approximating the amount of insoluble, suspended solids in determining the material-handling characteristics and fuel quality of OLHW. It is not intended to replace more sophisticated procedures for the determination of total solids.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The transport of any suspended solids or corrosion products from the preboiler cycle has been shown to be detrimental to all types of steam generating equipment. Corrosion product transport as low as 10 ppb can have significant impact on steam generators performance.5.2 Deposited corrosion products on pressurized water reactor (PWR) steam generator tubes can reduce heat transfer, and, if the deposit is sufficiently thick, can provide a local area for impurities in the bulk water to concentrate, resulting in a corrosive environment. In boiling water reactor (BWR) plants, the transport of corrosion products can cause fuel failure, out of core radiation problems from activation reactions, and other material related problems.5.3 In fossil plants, the transport of corrosion products can reduce heat transfer in the boilers leading to tube failures from overheating. The removal of these corrosion products by chemical cleaning is expensive and potentially harmful to the boiler tubes.5.4 Normally, grab samples are not sensitive enough to detect changes in the level of corrosion product transport. Also, system transients may be missed by only taking grab samples. An integrated sample over time will increase the sensitivity for detecting the corrosion products and provide a better understanding of the total corrosion product transport to steam generators.1.1 This practice is applicable for sampling condensed steam or water, such as boiler feedwater, for the collection of suspended solids and (optional) ionic solids using a 0.45-μm membrane filter (suspended solids) and ion exchange media (ionic solids). As the major suspended component found in most boiler feedwaters is some form of corrosion product from the preboiler system, the device used for this practice is commonly called a corrosion product sampler.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification describes the required properties and test methods for high-solids content, cold liquid-applied elastomeric membrane with integral wearing surface for waterproofing building decks not subject to hydrostatic pressure. This specification does not include specific requirements for skid resistance or fire retardance, although both may be important in specific uses. The properties to which the materials will be tested upon for conformance are as follows: weight loss of base coat; low temperature crack bridging; adhesion-in-peel to cement mortar and plywood substrates after water immersion; chemical resistance after water, ethylene glycol, and mineral spirits exposure; weathering resistance, recovery from elongation, tensile retention, and elongation retention; abrasion resistance; and stability.1.1 This specification describes the required properties and test methods for a cold liquid-applied elastomeric membrane for waterproofing building decks not subject to hydrostatic pressure. The specification applies only to a membrane system that has an integral wearing surface. This specification does not include specific requirements for skid resistance or fire retardance, although both may be important in specific uses.1.2 The type of membrane system described in this specification is used for pedestrian and vehicular traffic and in high-abrasion applications. The membrane may be single- or multi-component, and may consist of one or more coats (for example base coat, top coat, etc.). The coat(s) may be built to the desired thickness in one or more applications. One coat (base coat) provides the primary waterproofing function and normally comprises the major amount of organic material in the membrane. The function of the top coat(s) is to resist wear and weather. Aggregate may be used as a component of the membrane system, as all or part of a course, to increase wear and skid resistance.1.3 The committee with jurisdiction over this standard is not aware of any comparable standards published by other organizations.1.4 Test methods in this specification require a minimum 0.5-mm [0.020-in.] base coat dry film thickness. Actual thickness required for a particular application and the use of aggregate in topcoats shall be established by the membrane manufacturer.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 The following safety hazards caveat pertains only to the test method portion, Section 5, of this specification: This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the quantity of adhesive solids applied in a spreading or coating operation.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
65 条记录,每页 15 条,当前第 2 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页