微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This test method establishes a standard procedure of comparative testing, for tire strength and dimensional characteristics, for use under the Administrator's Cooperative Approved Tire List (CATL) (2).1.1 This test method covers measurements for comparative tire strength and dimensional characteristics. This test method covers new and retreaded pneumatic tires, both tube and tubeless types, and flaps when applicable, for mounting on construction, earthmoving, mining and logging equipment, graders, mobile cranes, and similar vehicles operated at low speeds off the road.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Comparison of brake horsepower developed and of specific fuel consumption rates from engine to engine may be made by use of data based upon a standard for composition of an engine assembly.4.2 The purchaser of the engine assembly will be fully advised of the minimum scope of assembly which the purchaser may rightfully expect to be encompassed by a response to a request for quotation and to be delivered in response to a purchase order unless the engine builder in the proposal or in the offer to sell has clearly advised otherwise.4.3 It will be made apparent to the purchaser that additional auxiliary and accessory equipment will be needed to supplement the defined engine assembly when full consideration is given to the application of the engine assembly as a prime mover in a specific vessel.1.1 This guide covers performance and minimum scope of assembly of all medium speed marine diesel engines intended for main propulsion of single or multiple screw propelled marine vessels or for vessels using other than screw propeller-type main propulsion.1.2 This guide is intended to supplement the regulations of legally constituted regulating authorities. In the event of any conflict, which may become apparent after publication of this guide, with such legally constituted regulations, the latter shall take precedence, as may be applicable within the jurisdiction of such authorities and specific to each case, unless such latter regulations are formally waived by proper cognizant authority.1.3 This guide is not intended to relieve the purchaser of the obligation fully to advise the engine builder of all of the purchaser’s unique operational considerations to allow those considerations to be satisfied.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These are accelerated engine oil tests (known as the 1K and 1N test procedures), performed in a standardized, calibrated, stationary single-cylinder diesel engine using either mass fraction 0.4 % sulfur fuel (1K test) or mass fraction 0.04 % sulfur fuel (1N test), that give a measure of (1) piston and ring groove deposit forming tendency, (2) piston, ring and liner scuffing and (3) oil consumption.5.2 The 1K test was correlated with vehicles equipped with certain multi-cylinder direct injection engines used in heavy duty and high speed service prior to 1989, particularly with respect to aluminum piston deposits, and oil consumption, when fuel sulfur was nominally mass fraction 0.4 %. These data are given in Research Report RR:D02-1273.95.3 The 1N test has been used to predict piston deposit formation in four-stroke cycle, direct injection, diesel engines that have been calibrated to meet 1994 U.S. federal exhaust emission requirements for heavy-duty engines operated on fuel containing less than mass fraction 0.05 % sulfur. See Research Report RR:D02-1321.95.4 These test methods are used in the establishment of diesel engine oil specification requirements as cited in Specification D4485 for appropriate API Performance Category oils (API 1509).5.5 These test methods are also used in diesel engine oil development.1.1 These test methods cover the performance of engine oils intended for use in certain diesel engines. They are performed in a standardized high-speed, single-cylinder diesel engine by either the 1K (0.4 % mass fuel sulfur) or 1N (0.04 % mass fuel sulfur) procedure.3 The only difference in the two test methods is the fuel used. Piston and ring groove deposit-forming tendency and oil consumption are measured. Also, the piston, the rings, and the liner are examined for distress and the rings for mobility. These test methods are required to evaluate oils intended to satisfy API service categories CF-4 and CH-4 for 1K, and CG-4 for 1N of Specification D4485.1.2 These test methods, although based on the original Caterpillar 1K/1N procedures,3 also embody TMC information letters issued before these test methods were first published. These test methods are subject to frequent change. Until the next revision of these test methods, TMC will update changes in these test methods by the issuance of information letters which shall be obtained from TMC (see Annex A1 – Annex A4).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, tubing size, or single source equipment specified. Also Brake Specific Fuel Consumption is measured in kilograms per kilowatthour.1.4 The following is the Table of Contents:    SectionIntroduction   1Referenced documents 2Terminology 3Summary of Test Methods 4 5Apparatus 6  General Laboratory Requirements 6.1  Test Engine 6.2  Test Engine Accessories and Parts 6.3Reagents and Materials 7Test Oil Sample Requirements 8Preparation of Apparatus 9  Engine Inspection 9.1  Engine Pre-Test Lubrication System Flush 9.2  Engine Pre-Test Measurements and Inspections 9.3  Engine Assembly 9.4  Pressure Testing of Fuel System Assembly 9.5Calibration of Engine Test Stand 10  General Requirements and Frequency of Calibration 10.1  Runs 10.2  Specified Test Parameters 10.3  Calibration Test Acceptance Criteria 10.4  Action on Rejection of Calibration Test 10.5  Test Numbering 10.6  Reference Oils 10.7  Severity Adjustments 10.8Engine Operating Procedure 11  Engine Run-In 11.1  Cool-Down Procedure 11.2  Warm-Up Procedure 11.3  Operating Conditions and Oil Additions 11.4  Measurement of Oil Consumption 11.5  Sampling Used Oil 11.6  Shutdowns, Lost Time and Off Tolerance Conditions 11.7  Recording of Exhaust Temperature 11.8  Air-Fuel Ratio Measurement 11.9  Recording of Engine Conditions 11.10  Humidity Requirements/Calibration/Measurement 11.11Inspections, Photographs and Measurements 12  Reference to Reporting Form 12.1  Pre-Test Measurements of Engine Parts 12.2  Post-Test Information 12.3  Oil Inspections 12.4Report 13  General Directions 13.1  Electronic Transmission of Test Results (Optional) 13.12  Reporting Calibration Test Results 13.13Precision and Bias 14Keywords 15  ANNEXES  ASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Specifications for Test Engine and Engine Build Annex A5Intake Air System Details Annex A6Exhaust System Details Annex A7Cooling System Details Annex A8Oil System Modifications and Instrument Locations Annex A9Other Pressure and Temperature Measurement Locations Annex A10Oil Consumption Linear Regression Method Annex A11Test Fuel Specifications Annex A12Lubrication System, Flush Apparatus and Procedure Annex A13Engine Operating Conditions Annex A14Procedure for Rating Piston and Liner Annex A15Calculation of Percent Offset and Percent Deviation Annex A161K/1N Test Reporting Annex A17Parts List by Part Number (P/N) and Warranty Annex A18Safety Precautions Annex A19  APPENDIXES  Humidity Data Appendix X1Statistical Equations for Mean and Standard Deviation Appendix X2Examples of Forms for Reporting Appendix X3Optional Recording of Oil Pass Limits Appendix X41.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements appear throughout the text. Being engine tests, these test methods do have definite hazards that shall be met by safe practices (see Annex A19 on Safety Precautions).1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

4.1 This test method may be used as a substitute for, or in conjunction with, coring to determine the thickness of slabs, pavements, decks, walls, or other plate structures. There is a certain level of systematic error in the calculated thickness due to the discrete nature of the digital records that are used. The absolute systematic error depends on the plate thickness, the sampling interval, and the sampling period.4.2 Because the wave speed can vary from point-to-point in the structure due to differences in concrete age or batch-to-batch variability, the wave speed is measured (Procedure A) at each point where a thickness determination (Procedure B) is required.4.3 This test method is a pplicable to plate-like structures with lateral dimensions at least six times the thickness. These minimum lateral dimensions are necessary to prevent other modes3 of vibration from interfering with the identification of the thickness mode frequency in the amplitude spectrum. As explained in Note 12, the minimum lateral dimensions and acceptable sampling period are related.4.4 The maximum and minimum thickness that can be measured is limited by the details of the testing apparatus (transducer response characteristics and the specific impactor). The limits shall be specified by manufacturer of the apparatus, and the apparatus shall not be used beyond these limits. If test equipment is assembled by the user, thickness limitations shall be established and documented.4.5 This test method is not applicable to plate structures with overlays, such as a concrete bridge deck with an asphalt or portland cement concrete overlay. The method is based on the assumption that the concrete plate has the same P-wave speed throughout its depth.4.6 Procedure A is performed on concrete that is air dry as high surface moisture content may affect the results.4.7 Procedure B is applicable to a concrete plate resting on a subgrade of soil, gravel, permeable asphalt concrete, or lean portland cement concrete provided there is sufficient difference in acoustic impedance3 between the concrete and subgrade or there are enough air voids at the interface to produce measurable reflections. If these conditions are not satisfied, the waveform will be of low amplitude and the amplitude spectrum will not include a dominant peak at the thickness frequency. If the interface between the concrete and subgrade is rough, the amplitude spectrum will have a rounded peak instead of a sharp peak associated with a flat surface.4.8 The procedures described are not influenced by traffic noise or low frequency structural vibrations set up by normal movement of traffic across a structure.4.9 The procedures are not applicable in the presence of mechanical noise created by equipment impacting (jack hammers, sounding with a hammer, mechanical sweepers, and so forth) on the structure.4.10 Procedure A is not applicable in the presence of high amplitude electrical noise, such as may produced by a generator or some other source, that is transmitted to the data-acquisition system.1.1 This test method covers procedures for determining the thickness of concrete slabs, pavements, bridge decks, walls, or other plate-like structures using the impact-echo method.1.2 The following two procedures are covered in this test method:1.2.1 Procedure A: P-Wave Speed Measurement—This procedure measures the time it takes for the P-wave generated by a short-duration, point impact to travel between two transducers positioned a known distance apart along the surface of a structure. The P-wave speed is calculated by dividing the distance between the two transducers by the travel time.1.2.2 Procedure B: Impact-Echo Test—This procedure measures the frequency at which the P-wave generated by a short-duration, point impact is reflected between the parallel (opposite) surfaces of a plate. The thickness is calculated from this measured frequency and the P-wave speed obtained from Procedure A.1.2.3 Unless specified otherwise, both Procedure A and Procedure B must be performed at each point where a thickness determination is made.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏
ASTM F2219-23 Standard Test Methods for Measuring High-Speed Bat Performance Active 发布日期 :  1970-01-01 实施日期 : 

4.1 These test methods offer a laboratory means to quantitatively compare the performance of baseball and softball bats.4.2 Use of these test methods can provide quantitative metrics of bat performance.1.1 A method for determining bat performance by measuring the bat-ball coefficient of restitution (BBCOR), deriving the collision efficiency (ea), and calculating a batted-ball speed (BBS). It is applicable to baseball and softball bats of any construction or material. The test methods provide quantitative measures of bat dynamic performance that may be used for comparison purposes.1.2 The BBCOR and BBS are each calculated from measurements taken in the laboratory on test equipment meeting the requirements defined in this standard.1.3 Bat performance is found in this standard assuming the bat is unconstrained.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
C22.2 NO. 156-M1987 (R2004) Solid-State Speed Controls 现行 发布日期 :  1970-01-01 实施日期 : 

1. Scope 1.1 This Standard applies to solid-state, single-phase motor speed controls, rated at 300 V and less, 20 A and less, designed to be used in circuits for the control of shaded pole, permanent split capacitor, or universal motors, and other mot

定价: 455元 / 折扣价: 387

在线阅读 收 藏

3.1 High speed dispersion is a commonly used dispersion method in the coatings industry. For the purpose of this practice, “high speed” would normally be understood to be a range of RPM between 3 000 and 10 000. This practice provides a reference for its use, so that a producer and user can standardize on an incorporation technique. This will minimize differences in the millbase, and allow the interested parties to concentrate on the physical, chemical, or optical methods to be run.1.1 This practice covers the dispersion of pigments using a laboratory size high-speed impeller mill. It is similar in technical content to ISO 8780-3.NOTE 1: This practice is restricted to mill bases of moderately high viscosity due to either high vehicle concentration or high pigment concentration, or both, which can produce high shear force. It is not intended to provide a means of formulating either pilot plant or full-scale mill base compositions (scaling up the process from laboratory equipment to factory mills is not simple).1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method measures a lubricant's ability to protect final drive axles from abrasive wear, adhesive wear, plastic deformation, and surface fatigue when subjected to low-speed, high-torque conditions. Lack of protection can lead to premature gear or bearing failure, or both.5.2 This test method is used, or referred to, in the following documents:5.2.1 American Petroleum Institute (API) Publication 1560.85.2.2 STP-512A.95.2.3 SAE J308.5.2.4 Military Specification MIL-PRF-2105E.5.2.5 SAE J2360.1.1 This test method is commonly referred to as the L-37 test.2 This test method covers a test procedure for evaluating the load-carrying, wear, and extreme pressure properties of a gear lubricant in a hypoid axle under conditions of low-speed, high-torque operation.1.2 This test method also provides for the running of the low axle temperature (Canadian) L-37 test. The procedure for the low axle temperature (Canadian) L-37 test is identical to the standard L-37 test with the exceptions of the items specifically listed in Annex A9. The procedure modifications listed in Annex A9 refer to the corresponding section of the standard L-37 test method.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3.1 Exceptions—In Table A12.1, the values stated in SI units are to be regarded as standard. Also, no SI unit is provided where there is not a direct SI equivalent.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 4 and 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method evaluates the ability of an automotive engine to mitigate preignition in the combustion chambers in turbocharged, direct injection, gasoline engines under low-speed and high-load operating conditions.5.2 Varying quality reference oils, with known preignition tendencies, were used in developing the operating conditions of the test procedure.5.3 The test method has applicability in gasoline-engine-oil specifications and is expected to be used in specifications and classifications of engine lubricating oils, such as the following:5.3.1 Specification D4485.5.3.2 ILSAC GF-6.5.3.3 SAE Classification J183.1.1 This laboratory engine test evaluates the ability of an automotive engine to mitigate preignition in the combustion chambers in gasoline, turbocharged, direct-injection (GTDI) engines under low-speed and high-load operating conditions. This test method is commonly known as the Ford low-speed, preignition (LSPI) test.1.1.1 In vehicles, equipped with relatively small GTDI spark-ignition engines, preignition has occasionally occurred when the vehicles are operated under low-speed and high-load conditions. Uncontrolled, preignition may cause destructive engine damage.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, tubing size, wire gauge, or specified single source equipment.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 1058元 / 折扣价: 900 加购物车

在线阅读 收 藏

5.1 Final drive axles are often subjected to severe service where they encounter high speed shock torque conditions, characterized by sudden accelerations and decelerations. This severe service can lead to scoring distress on the ring gear and pinion surface. This test method measures anti-scoring properties of final drive lubricants.5.2 This test method is used or referred to in the following documents:5.2.1 American Petroleum Institute (API) Publication 1560.75.2.2 SAE J308 and SAE J2360.1.1 This test method covers the determination of the anti-scoring properties of final drive axle lubricating oils when subjected to high-speed and shock conditions. This test method is commonly referred to as the L-42 test.21.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.2.1 Exceptions—SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, National Pipe Threads/diameters, tubing size, and single source equipment suppliers.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 4 and 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 This test method is designed to provide load versus deformation response of plastic films under essentially multi-axial deformation conditions at impact velocities. This test method further provides a measure of the rate sensitivity of the plastic films to impact.4.2 Multi-axial impact response, while partly dependent on thickness, does not necessarily have a linear correlation with specimen thickness. Therefore, results should be compared only for specimens of essentially the same thickness, unless specific responses versus thickness formulae have been established for the plastic films being tested.4.3 For many plastic films, it is possible that a specification exists that requires the use of this test method, but with some procedural modifications that take precedence when adhering to the specification. Therefore, it is advisable to refer to that material specification before using this test method. Table 1 of Classification System D4000 lists the ASTM materials standards that currently exist.4.4 The values obtained by this test method are highly dependent on the method and conditions of film fabrication as well as the type and grade of resin. Results can vary significantly, depending upon sample quality, uniformity of film gage, die marks, contaminants, and so forth.1.1 This test method covers the determination of puncture properties of plastic films, over a range of test velocities.1.1.1 ASTM Terminology Standard D883 has defined film as having a thickness not greater than 0.25 mm. Plastic materials having a thickness above this limit are not to be excluded from use unless shown to be rigid (see 3.2.1). Test Method D3763 is the recommended method for instrumented puncture testing of rigid plastics.1.2 Test data obtained by this test method is relevant and appropriate for use in engineering design.1.3 The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method does not closely conform to ISO 7765-2. The only similarity between the two tests is that they are both instrumented impact tests. The differences in striker, fixture, specimen geometries and in test velocity can produce significantly different test results.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Walking speed CFME is used to measure skid resistance on pavements/sidewalks, roads, repaired pavements, horizontal pavement markings, helidecks, and other trafficked surfaces.5.2 Walking speed CFME is designed for low-speed surface friction surveys.5.3 Walking speed CFME does not require acceleration or deceleration areas. Friction surveys begin from a standing or rolling start.5.4 Walking speed CFME can work in very close proximity to people and obstacles.5.5 The Specification E1844 measure tire is a smooth tire that is mounted on walking speed CFME. A new ASTM tire standard is required for alternate tires designed for use on walking speed CFME. ASTM tire standards shall be entered in the referenced documents section of this standard.5.6 Walking speed CFME can be specialized to operate in specific areas, such as helidecks, with a specialized software application for a specific surface area. See Fig. 1.FIG. 1 Software Program for Helidecks5.7 The field calibration/field test equipment, if required, should be contained within a transport case, readily available for field use. See Fig. 2.FIG. 2 Transport Case with Pull Handle and Wheels1.1 This test method is used to measure skid resistance on a wide range of trafficked surfaces and for a wide variety of circumstances using a walking speed continuous friction-measuring equipment (CFME) fixed-slip measuring equipment. The fixed-slip ratio is typically 12 to 20 % but may vary between CFME manufacturers.1.2 Walking speed CFME enables surface friction surveys to be conducted where high-speed CFME is not able to measure because of safety reasons or due to limited operating space. Walking speed CFME is battery operated and pushed forward at a normal walking pace by the operator.1.3 Walking speed CFME enables friction surveys to be undertaken over short lengths with precise survey lines such as friction (Mu) values for every 100 mm along a survey line.1.4 Friction surveys can be conducted on dry surfaces, wet surfaces, contaminated surfaces, or with a self-wetting feature.1.5 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This is an accelerated engine oil test, performed in a standardized, calibrated, stationary single-cylinder diesel engine that gives a measure of (1) piston and ring groove deposit forming tendency, (2) piston, ring, and liner scuffing and (3) oil consumption. The test is used in the establishment of diesel engine oil specification requirements as cited in Specification D4485 for appropriate API Performance Category C oils (API 1509). The test method can also be used in diesel engine oil development.1.1 This test method covers stressing an engine oil under modern high-speed diesel operating conditions and measures the oil's deposit control, lubrication ability, and resistance to oil consumption. It is performed in a laboratory using a standardized high-speed, single-cylinder diesel engine.31.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, and tubing size, or where a sole source supplier is specified.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Being an engine test method, this test method does have definite hazards that require safe practices (see Appendix X2 on Safety).1.4 The following is the Table of Contents: 1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus and Installation 6 Intake Air System 6.2.1 Exhaust System 6.2.2 Fuel System 6.2.3 Oil Consumption System 6.2.4 Engine Oil System 6.2.5 Engine Coolant System 6.2.6 Engine Instrumentation 6.2.7Reagents and Materials 7Oil Samples 8Preparation of Apparatus 9 General Engine Assembly Practices 9.1 Complete Engine Inspection 9.2 Copper Component 9.3 Engine Lubricant System Flush 9.4 Engine Piston Cooling Jet 9.5 Engine Measurements and Inspections 9.6 Cylinder Head 9.7 Valve Guide Bushings 9.8 Fuel Injector 9.9 Piston and Rings 9.10 Cylinder Liner 9.11 Compression Ratio 9.12 Engine Timing 9.13 Engine Coolant System Cleaning Procedure 9.14Calibration and Standardization 10 Test Cell Instrumentation 10.1 Instrumentation Standards 10.2 Coolant Flow 10.3 Fuel Injectors 10.4 Air Flow 10.5 Intake Air Barrel 10.6 Fuel Filter 10.7 Oil Scale Flow Rates 10.8 Test Stand Calibration 10.9  Re-calibration Requirements 10.9.1  Extending Test Stand Calibration Period 10.9.2 Test Run Numbering 10.10 Humidity Calibration Requirements 10.11 Calibration of Piston Deposit Raters 10.12Procedure 11 Engine Break-in Procedure 11.1 Cool-down Procedure 11.2 Warm-up Procedure 11.3 Shutdowns and Lost Time 11.4 Periodic Measurements 11.5 Engine Control Systems 11.6  Engine Coolant 11.6.1  Engine Fuel System 11.6.2  Engine Oil Temperature 11.6.3  Exhaust Pressure 11.6.4  Intake Air 11.6.5 Post-Test Procedures 11.7  Piston Ring Side Clearances 11.7.1  Piston Ratings 11.7.2  Ring Gap End Increase 11.7.3  Cylinder Liner Wear 11.7.4  Cylinder Liner Bore Polish 11.7.5  Photographs 11.7.6Calculation and Interpretation of Results 12 Test Validity 12.1 Calculations 12.4  Quality Index 12.4.1  Oil Consumption 12.4.2Report 13 Forms and Data Dictionary 13.1 Test Validity 13.2 Report Specifics 13.3Precision and Bias 14 Precision 14.1 Bias 14.2Keywords 9.11.1Annexes  Engine and Parts Warranty Annex A1Instrument Locations, Measurements and Calculations Annex A2Cooling System Arrangement Annex A3Intake Air Mass Flow Sensor Installation Annex A4Fuel System Design and Required Components Annex A5Oil System Annex A6Additional Report Forms Annex A7Engine Assembly and Inspection Information Annex A8Flushing Instructions and Apparatus Annex A9Warm-up, Cool-down and Testing Conditions Annex A10Piston and Liner Rating Modifications Annex A11Return Goods Authorization Claim Form Annex A12Appendixes  Various Examples of Supplemental Information for Reference Purposes Appendix X1Safety Appendix X21.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

3.1 This test method describes a rapid method for separating pigment from solvent-reducible paints.3.2 This test method is used by paint producers and consumers for product acceptance and process control.1.1 This test method covers the separation of pigment from solvent-reducible paints and the calculation of the percent pigment from the results of nonvolatile determinations on the total paint and the separated vehicle.NOTE 1: This test method has been proven to be applicable to most solvent-reducible paints, the exception being those paints containing severely bleeding pigments or pigments such as carbon black that are very difficult or impossible to centrifuge.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
35 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页