微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This test method is intended primarily to measure the gloss retention of waxed specimens exhibiting relatively good gloss. 1.2 The values stated in acceptable metric units are to be regarded as the standard. The values in parentheses are for information only. 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Metal parts made by additive manufacturing differ from their traditional metal counterparts made by forging, casting, or welding. Additive manufacturing produces layers melted or sintered on top of each other. The part’s shape is controlled by a computer as well as by the layers. The computer directs energy from a laser or electron beam onto a powder bed or wire input material. These processing approaches have the potential of creating flaws that are undesirable in the as-built or finished part. In general, processing parameter anomalies and disruptions during a build may induce such “flaws.” Flaws can also be introduced because of contaminants present in the input material.4.2 Established NDT procedures such as those given in ASTM E07 standards are the basis for the NDT procedures discussed in this guide. These NDT procedures are used to inspect production parts before or after post-processing or finishing operations, or after receipt of finished parts by the end user prior to installation. The NDT procedures described in this guide are based on procedures developed for conventionally manufactured cast, wrought, or welded production parts.4.3 Application of the NDT procedures discussed in this guide is intended to reduce the likelihood of material or component failure, thus mitigating or eliminating the attendant risks associated with loss of function, and possibly, the loss of ground support personnel, crew, or mission.4.4 Input Materials—The input materials covered in this guide consist of, but are not limited to, ones made from aluminum alloys, titanium alloys, nickel-based alloys, cobalt-chromium alloys, and stainless steels. Input materials are either powders or wire.NOTE 3: When electron beams are used, the beam couples effectively with any electrically conductive material, including aluminum and copper-based alloys.4.4.1 Powders—High-quality powders required for AM process are produced by (1) plasma atomization, (2) inert gas atomization, or (3) centrifugal atomization using rotating electrodes (Fig. 1).(A) Abbreviations used: … = unknown or not applicable, CAD = computer aided design, CMM = coordinate measuring machine, CT = computed tomography, DED = directed energy deposition, EBM = electron beam melting, ET = eddy current testing, EMF = electromagnetic frequency, HIP = hot isostatic pressing, IRT = irfrared thermography, LOF = lack of fusion, MET = optical metrology, PA = plasma arc, PBF = powder bed fusion, PCRT = process compensated resonance testing, PT = penetrant testing, SLM = selective laser melting, and UT = ultrasonic testing.(B) Portions of table courtesy of AMAZE FP7 project.(C) Discontinuities or indications detected by NDT that are not necessarily rejectable.(D) Due to rapidly quenching, which may also lead to metastable or nonequilibrium morphologies.(E) Issue during long builds.(F) ISO TC 261 JG59 N 237 Guide.(G) If surface or near surface.NOTE 15: There are longstanding NDT standard flaw classes for welds and castings. In general, the defect classes for welded and cast parts differ from the flaw classes for AM parts.4.9 Process-Flaw Correlation—Given the range of materials and processes encountered in metal additive manufacturing, the process origins of flaws are still being characterized. However, examples exist. For example, when the energy input is insufficient, successive scan tracks do not properly fuse together and flaws appear along the scan line. In L-PBF parts, incomplete wetting and balling effects associated with insufficient energy input have been shown to lead to pores or voids. In addition, EB-PBF parts can show large voids or cavities extending across several layers when the process parameters are not carefully chosen. Smaller spherical pores can also develop in EBM parts due to entrapment of gases originally present gas-atomized metal powders.4.10 Flaw-Property Correlation—Parts with flaws, for example, porosity, LOF, skipped layers, stop/start flaws, inclusions, or excessive surface roughness, can exhibit degraded strength and fatigue properties compared with parts with fewer flaws. Furthermore, it is accepted practice to identify regions experiencing principle stresses before NDT is performed to assess the potential effect of any detected flaws in those regions. In addition to flaw type, size, and location, other flaw characteristics may be relevant, such as number, total volume, flaw/length (aspect ratio), orientation, and average nearest neighbor distance, and proximity to surfaces.(A) Abbreviations used: DED = Directed Energy Deposition, HAZ = Heat Affected Zone, HIP = Hot Isostatic Pressing(A) Abbreviations used: … = not applicable, AE = Acoustic Emission, CR = Computed Radiography, CT = Computed Tomography, DR = Digital Radiology, ET = Eddy Current Testing, IRT = Infrared Thermography, LT = Leak Testing , MET = Metrology, MT = Magnetic Particle Testing, NR = Neutron Radiography, PCRT = Process Compensated Resonance Testing, PT = Penetrant Testing, RT = Radiographic Testing, UT = Ultrasonic Testing, and VT = Visual Testing.(B) Includes Digital Imaging.(C) Especially helpful when characterizing internal passageways or cavities (complex geometry parts) for underfill and overfill, or other internal features not accessible to MET, PT, or VT (including borescopy).(D) Applicable if on surface.(E) Radiographic methods are not optimal for detecting tight laminar features like cracking and LOF, which typically do not exhibit enough density change.(F) If large enough to cause a leak or pressure drop across the part.(G) Macroscopic cracks only.(H) Conventional neutron radiography (NR) allows determination of internal and external dimensions.(I) Pycnometry (Archimedes principle).(J) Density variations will only show up in imaged regions having equivalent thickness.(K) If inclusions are large enough and sufficient scattering contrast exists.(L) Residual stress can be assessed if resulting from surface post-processing (for example, peening).1.1 This guide discusses the use of established and emerging nondestructive testing (NDT) procedures used to inspect metal parts made by additive manufacturing (AM).1.2 The NDT procedures covered produce data related to and affected by microstructure, part geometry, part complexity, surface finish, and the different AM processes used.1.3 The parts tested by the procedures covered in this guide are used in aerospace applications; therefore, the inspection requirements for discontinuities and inspection points in general are different and more stringent than for materials and components used in non-aerospace applications.1.4 The metal materials under consideration include, but are not limited to, aluminum alloys, titanium alloys, nickel-based alloys, cobalt-chromium alloys, and stainless steels.1.5 The manufacturing processes considered use powder and wire feedstock, and laser or electron energy sources. Specific powder bed fusion (PBF) and directed energy deposition (DED) processes are discussed.1.6 This guide discusses NDT of parts after they have been fabricated. Parts will exist in one of three possible states: (1) raw, as-built parts before post-processing (heat treating, hot isostatic pressing, machining, etc.), (2) intermediately machined parts, or (3) finished parts after all post-processing is completed.1.7 The NDT procedures discussed in this guide are used by cognizant engineering organizations to detect both surface and volumetric flaws in as-built (raw) and post-processed (finished) parts.1.8 The NDT procedures discussed in this guide are computed tomography (CT, Section 7, including microfocus CT), eddy current testing (ET, Section 8), optical metrology (MET, Section 9), penetrant testing (PT, Section 10), process compensated resonance testing (PCRT, Section 11), radiographic testing (RT, Section 12), infrared thermography (IRT, Section 13), and ultrasonic testing (UT, Section 14). Other NDT procedures such as leak testing (LT) and magnetic particle testing (MT), which have known utility for inspection of AM parts, are not covered in this guide.1.9 Practices and guidance for in-process monitoring during the build, including guidance on sensor selection and in-process quality assurance, are not covered in this guide.1.10 This guide is based largely on established procedures under the jurisdiction of ASTM Committee E07 on Nondestructive Testing and is the direct responsibility of the appropriate subcommittee therein.1.11 This guide does not recommend a specific course of action for application of NDT to AM parts. It is intended to increase the awareness of established NDT procedures from the NDT perspective.1.12 Recommendations about the control of input materials, process equipment calibration, manufacturing processes, and post-processing are beyond the scope of this guide and are under the jurisdiction of ASTM Committee F42 on Additive Manufacturing Technologies. Standards under the jurisdiction of ASTM F42 or equivalent are followed whenever possible to ensure reproducible parts suitable for NDT are made.1.13 Recommendations about the inspection requirements and management of fracture critical AM parts are beyond the scope of this guide. Recommendations on fatigue, fracture mechanics, and fracture control are found in appropriate end user requirements documents, and in standards under the jurisdiction of ASTM Committee E08 on Fatigue and Fracture.NOTE 1: To determine the deformation and fatigue properties of metal parts made by additive manufacturing using destructive tests, consult Guide F3122.NOTE 2: To quantify the risks associated with fracture critical AM parts, it is incumbent upon the structural assessment community, such as ASTM Committee E08 on Fatigue and Fracture, to define critical initial flaw sizes (CIFS) for the part to define the objectives of the NDT.1.14 This guide does not specify accept-reject criteria used in procurement or as a means for approval of AM parts for service. Any accept-reject criteria are given solely for purposes of illustration and comparison.1.15 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.16 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.17 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

1 Scope This part of ISO 10993 specifies test methods for the assessment of the local effects of an implant material on living tissue, at both the macroscopic and microscopic level. The test specimen is implanted into a site and tissue appropriate f

定价: 546元 / 折扣价: 465

在线阅读 收 藏

5.1 Even so-called high-purity water will contain contaminants. While not always present, these contaminants may contribute one or more of the following: dissolved active ionic substances such as calcium, magnesium, sodium, potassium, manganese, ammonium, bicarbonates, sulfates, nitrates, chloride and fluoride ions, ferric and ferrous ions, and silicates; dissolved organic substances such as pesticides, herbicides, plasticizers, styrene monomers, deionization resin material; and colloidal suspensions such as silica. While this test method facilitates the monitoring of these contaminants in high-purity water, in real time, with one instrument, this test method is not capable of identifying the various sources of residue contamination or detecting dissolved gases or suspended particles.5.2 This test method is calibrated using weighed amounts of an artificial contaminant (potassium chloride). The density of potassium chloride is reasonably typical of contaminants found in high-purity water; however, the response of this test method is clearly based on a response to potassium chloride. The response to actual contaminants found in high-purity water may differ from the test method's calibration. This test method is not different from many other analytical test methods in this respect.5.3 Together with other monitoring methods, this test method is useful for diagnosing sources of RAE in ultra-pure water systems. In particular, this test method can be used to detect leakages such as colloidal silica breakthrough from the effluent of a primary anion or mixed-bed deionizer. In addition, this test method has been used to measure the rinse-up time for new liquid filters and has been adapted for batch-type sampling (this adaptation is not described in this test method).5.4 Obtaining an immediate indication of contamination in high-purity water has significance to those industries using high-purity water for manufacturing components; production can be halted immediately to correct a contamination problem. The emerging nano-particle technology industry will also benefit from this information.1.1 This test method covers the determination of dissolved organic and inorganic matter and colloidal material found in high-purity water used in the semiconductor, and related industries. This material is referred to as residue after evaporation (RAE). The range of the test method is from 0.001 μg/L (ppb) to 60 μg/L (ppb).1.2 This test method uses a continuous, real time monitoring technique to measure the concentration of RAE. A pressurized sample of high-purity water is supplied to the test method's apparatus continuously through ultra-clean fittings and tubing. Contaminants from the atmosphere are therefore prevented from entering the sample. General information on the test method and a literature review on the continuous measurement of RAE has been published.21.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to determine the vulcanization characteristics of (vulcanizable) rubber compounds under selected test conditions of strain and frequency which do not significantly affect the cured dynamic properties. In the same test, this test method also will measure the dynamic properties of the vulcanizate at temperatures significantly below the cure temperature. These lower temperature measurements are necessary in order to more effectively relate to rubber product service conditions.5.2 This test method may be used for quality control in rubber manufacturing processes and for research and development testing of rubber compounds containing curatives. This test method also may be used for evaluating cure and dynamic property differences resulting from the use of different compounding ingredients.5.3 For additional information regarding the significance of dynamic testing of vulcanized rubber, the reader may wish to reference Guide D5992.1.1 This test method covers the use of a rotorless oscillating shear rheometer for measuring after cure dynamic properties at predetermined temperature(s) below the cure temperature.1.2 Specified cure conditions that approximate a “static cure” also are covered to minimize effects on cured rubber compound dynamic properties. This test method is not intended to replace Test Method D5289.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 Warning—Compounds based on silicone or fluoroelastomers may have high levels of thermal contraction or poor adhesion to the dies when cooled after the cure portion of this test method, causing slippage during strain sweeps. If this occurs, the results will not be reliable.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Glass fiber reinforcing meshes are used to strengthen EIFS. The reinforcing meshes are embedded into base coats that contain portland cement, which potentially exposes the glass fibers in the reinforcing meshes to weakening by the action of alkali. The breaking force following alkali exposure as determined by this method, is a factor used to comparatively evaluate the alkali resistance of EIFS glass fiber reinforcing meshes in the laboratory.5.2 This test method does not purport to simulate the conditions that may be encountered in service. The performance of an EIFS is a function of many factors, such as proper installation, rigidity of supporting construction and resistance of the EIFS to deterioration by other causes.1.1 This test method covers procedures for determining the breaking force of glass fiber mesh following their conditioning in an alkali solution. The method is applicable to glass fiber mesh used in Class PB Exterior Insulation and Finish Systems (EIFS) with base coats that contain portland cement as an ingredient.1.2 Breaking force is expressed both as force per unit width of mesh and as a percentage of the breaking force of the mesh that has not been exposed to alkali conditioning.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is useful for both quality control and research.1.1 This practice covers determination of the color stability of a hydrocarbon resin by exposure to a specific temperature for a defined time period in a forced-draft oven.1.2 Color stability is measured by the change in color of the test resin, measured via the yellowness index color scale, in accordance with Practice E313, or the procedure for Gardner Color, Test Method D6166.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This method is capable of measuring the concentration of boron, silicon, and technetium in UF6. Limits for these contaminants are set in Specifications C787 and C996.1.1 This test method covers the determination of boron, silicon, and technetium in hydrolyzed uranium hexafluoride (UF6) by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after separation of the uranium by solid phase extraction.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 7 on Hazards.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Cyanide and hydrogen cyanide are highly toxic. Regulations have been established requiring the measurement of cyanide in soil and solid waste samples. This practice is also useful for performing material balances to account for the distribution of cyanides in cyanidation products from metallurgical processes.5.2 This practice is applicable to the determination of available or total water soluble, or both, and water insoluble cyanides in soil and solid waste.5.3 Water insoluble cyanide complexes, such as Prussian blue, are not completely recovered by distillation methods. This practice extracts all cyanides, including the water insoluble cyanides such as Prussian blue, and then the extract solution can be analyzed for cyanide with Test Methods D6888, D7284, or D7511.1.1 This practice is used for the determination of total or available cyanide in solid waste, sediment and soil samples after alkaline extraction. Simple cyanide (CN-) salts of group 1 and group 2 (alkali and alkaline earth) metals; soluble alkali and alkaline earth salts of zinc, copper, cadmium, mercury, nickel, silver, and iron cyanide complexes; and insoluble metal-metal cyanide complexes, such as Prussian blue, are quantitatively recovered. Gold, platinum group metals and cobalt cyanide complexes are not recovered during analysis.1.2 Free cyanide cannot be determined due to the change of equilibrium conditions during the extraction process.1.3 Cyanide complexes are extracted into an alkaline solution as described in this practice. Measure the total cyanide using Test Methods D7511 or D7284. Measure the available cyanide using Test Method D6888. Calculate cyanide content in the soil or waste.1.4 The method detection limit (MDL) is dependent on the test method used to measure the cyanide content. Based on the methods cited, it is approximately 1 mg/kg and the minimum level (ML) is 5 mg/kg. The applicable range is also dependent on the test method used to measure cyanide. Based on the methods cited, it is 5 to 100 mg/kg.1.5 This practice should be used by analysts experienced with extractions and flow injection analysis (FIA), or working under the close supervision of such qualified persons.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title means only that the document has been approved through the ASTM consensus process.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 9.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Extrudability measurements of latex sealants serve to indicate only their ease of application; they do not predict the performance capability of the compound after installation.5.2 This test method also measures freeze-thaw and heat stability of such sealants.1.1 This test method covers a laboratory procedure for the determination of extrudability of latex sealants after freeze-thaw and heat cycling.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Currently there is no ISO standard similar to this test method.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The color of maleic anhydride can be an indication of the purity of these materials. High colors normally indicate contamination or decomposition. This test method is suitable for setting specifications and for use as an internal quality control tool.1.1 This test method covers the determination of the visual measurement of the color of maleic anhydride melt before and after prolonged heating under specified conditions of time and temperature. Color values are expressed in terms of platinum-cobalt standards.1.2 This test method covers the range 0 to 100 color standard numbers.1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Sections 7, 10.2.1, and 10.4.2.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 When coke lumps descend in the blast furnace, they are subjected to reaction with countercurrent CO2 and to abrasion as they rub together and against the walls of the furnace. These concurrent processes physically weaken and chemically react with the coke lumps, producing an excess of fines that can decrease burden permeability and result in increased coke rates and lost hot metal production. This test method is designed to measure indirectly this behavior of coke in the blast furnace.1.1 This test method, patterned after the Nippon Steel test procedure (see Carbonization Research Report 91 and Nishi et al.2), describes the equipment and techniques used for determining lump coke reactivity in carbon dioxide (CO2) gas at elevated temperatures and its strength after reaction in CO2 gas by tumbling in a cylindrical chamber referred to as an I-tester.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The fire performance of a material or product is affected by a combination of its fire-test-response characteristics. Two of the most commonly determined fire-test-response characteristics of cushioning materials are the surface flammability, in accordance with Test Method D3675, and the specific optical density of smoke, in accordance with Test Method E662.5.2 Cushioning materials used in upholstery applications are potentially exposed to leaching of the active ingredients due to (1) water solubility of the treating agents or (2) exposure to high humidity.5.3 In view of the importance that the fire performance of the cushioning materials used in upholstery applications remain constant throughout their intended service life, this test method provides a means to test for the potential change in two fire-test-response characteristics due to leaching.1.1 This fire-test-response test method covers a procedure for leaching cushioning materials with water and determining changes in two specific fire-test-response characteristics: (1) the surface flammability, in accordance with Test Method D3675, and (2) the specific optical density of smoke generated, in accordance with Test Method E662.1.2 In view of the wide variation in potential service conditions, it is likely that results of this leaching test will not give a direct correlation with service performance for all applications. However, the test method yields comparative data on which to base judgments as to expected service of cushioning materials and is useful in research and development work.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 7.1.6 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

6.1 This test method is used to determine a membrane's ability to bridge a crack that forms after the membrane has been applied and allowed to cure.1.1 This test method describes a laboratory procedure for determining extensibility for one- or two-component cold liquid-applied elastomeric waterproofing membranes.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 The committee with jurisdiction over this standard is not aware of any comparable standards published by other organizations.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test evaluates the flexibility of artificially weathered latex sealants in a low-temperature environment.1.1 This test method covers a laboratory procedure for the determination of low-temperature flexibility of latex sealants after 500 h artificial weathering.1.2 The values stated in metric (SI) units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Currently there is no ISO standard similar to this test method.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
40 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页