微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method is useful for characterizing the flow behavior of asphalt emulsion residues and non-Newtonian asphalts. However, since non-Newtonian viscosity values depend on the level of shearing stress, its duration, and the shear history of the material, a non-Newtonian viscosity is not a unique material property. Instead, it is a parameter which is characteristic of the fluid-viscometer system under the conditions of the measurement procedure. Therefore, comparisons of non-Newtonian material behavior should only be made using apparent viscosities determined in similar viscometers under similar conditions of shearing stress and stress history. Procedures of sample preparation are especially important for repeatability or reproducibility of test results.NOTE 3: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capacity, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method describes procedures primarily designed to determine the apparent viscosities of residues obtained by distilling asphalt emulsions according to Test Method D6997. It is also recommended for use on non-Newtonian asphalts at any temperature within the capability of the apparatus. This test method is useful in characterizing rheological properties of non-Newtonian asphalts as a function of shear rate under the conditions of the test method. This test is run in straight open-end tube viscometers, normally at 60 °C, but is suitable for use at other temperatures. It is applicable over the range from 5 to 50 000 Pa·s.NOTE 1: The precision for this test method is based on determinations made at 60 °C.1.2 The values stated in SI units are to be regarded as the standard, except in reference to viscometer constant or calibration factor (K).1.3 Warning— Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury or its vapor may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheets (MSDS) for details and the EPA’s website (www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury, mercury-containing products, or both, in your state may be prohibited by state law.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method covers the evaluation of the apparent density physical characteristic of powders. The degree of correlation between the results of this test and the quality of powders in use will vary with each particular application and has not been fully determined.4.2 The apparent density measured via this test method is often referred to as the “Scott Density.”1.1 This test method covers determination of the apparent density of metal powders and related compounds using the Scott Volumeter, also known as the Paint Pigment Volumeter.1.2 Units—With the exception of the values for density and the mass used to determine density, for which the use of the gram per cubic centimetre (g/cm3) and gram (g) units is the longstanding industry practice, the values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is used to measure the apparent viscosity of hydrocarbon resins at elevated temperatures. Elevated temperature viscosity values of a hydrocarbon resin may be related to the properties of coatings, adhesives and the like, containing such a resin.5.2 For hydrocarbon resins, values of apparent viscosity will usually be a function of shear rate under the conditions of test. Although the type of viscometer described in this test method operates under conditions of relatively low shear rate, shear rate depends on the spindle and rotational speed selected for a determination; therefore, comparisons between apparent viscosity values should be made only for measurements made with similar viscometers under conditions of equivalent shear rate.1.1 This test method covers the determination of the apparent viscosity of hydrocarbon resins having apparent viscosities up to 2,000,000 millipascal seconds (mPa·s) (Note 1) at temperatures up to 300 °C [572 °F].NOTE 1: The SI unit of (dynamic) viscosity is the pascal second. The centipoise (cP) is one millipascal second (mPa·s) and is frequently used as a viscosity unit.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Viscosity is an important property of fluid lubricants. The viscosity of all fluids varies with temperature. Many common petroleum lubricants are non-Newtonian: their viscosity also varies with shear rate. The usefulness of the viscosity of lubricants is greatest when the viscosity is measured at or near the conditions of shear rate and temperature that the lubricants will experience in service.5.2 The conditions of shear rate and temperature of this test method are thought to be representative of those in the bearing of automotive engines in severe service.5.3 Many equipment manufacturers and lubricant specifications require a minimum high-temperature high-shear viscosity at 150 °C and 106 s−1. The shear rate in capillary viscometers varies across the radius of the capillary. The apparent shear rate at the wall for this test method is increased to compensate for the variable shear rate.35.4 This test was evaluated in an ASTM cooperative program.61.1 This test method covers the laboratory determination of high-temperature high-shear (HTHS) viscosity of engine oils at a temperature of 150 °C using a multicell capillary viscometer containing pressure, temperature, and timing instrumentation. The shear rate for this test method corresponds to an apparent shear rate at the wall of 1.4 million reciprocal seconds (1.4 × 106 s−1).3 This shear rate has been found to decrease the discrepancy between this test method and other high-temperature high-shear test methods3 (Test Methods D4683 and D4741) used for engine oil specifications. Viscosities are determined directly from calibrations that have been established with Newtonian oils with nominal viscosities from 1.4 mPa·s to 5.0 mPa·s at 150 °C. The precision has only been determined for the viscosity range 1.45 mPa·s and 5.05 mPa·s at 150 °C for the materials listed in the precision section.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 The centiPoise (cP) is a non-SI metric unit of viscosity that is numerically equal to the milliPascal-second (mPa·s).1.2.2 Pounds per square inch (psi) is a non-SI unit of pressure that is approximately equal to 6.895 kPa. These units are provided for information only in 6.1.1, 7.3, 9.1.2.1, and the tables.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to measure the apparent viscosity of thermoplastic pavement marking at elevated temperatures. Elevated temperature viscosities of thermoplastic pavement marking may be related to the properties of coatings, adhesives, and composite thermoplastics. This method is helpful in determining the flow properties which can be used in determining processability when applied to the road surface.5.2 Thermoplastic pavement markings may be applied to the road surface in several different ways. Typical methods of application are screed extrude, ribbon extrude, thin film spray, and standard spray. Proper application depends on the viscosity of the thermoplastic material at application temperatures for the method being used. Thin-line applied thermoplastic pavement marking, for example, requires a relatively lower viscosity. Screed extrude applied thermoplastic requires a higher viscosity.5.3 Materials of the type described in this procedure may be non-Newtonian, and as such, the apparent viscosity will be a function of shear rate under the conditions of test. Although the viscometer described in this test method operates under conditions of relatively low shear rate, differences in shear effect can exist depending upon the spindle and rotational speed conditions selected for the test program. Comparisons between non-Newtonian viscosity values should be made only for measurements made with similar viscometers under conditions of equivalent shear. For this method, “torpedo” spindles are recommended. Spindles considered torpedo spindles are ~1-in. long and come in many diameters with a 45° conical bottom. A diameter that is half the diameter of the thimbles used is recommended. If large glass beads are used in the pavement marking formulation, a smaller diameter spindle may be needed so the beads do not cause an impedance of the spindle due to a jamming between the inside wall of the thimble and the spindle.1.1 This test method covers the sample preparation and testing procedure needed to determine the apparent viscosity of a thermoplastic pavement marking formulation at elevated temperatures to the specimen.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are customary units and are provided as a courtesy to the user.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 These test methods cover the determination of the amount of apparent free phenol in synthetic phenolic resins or solutions used for coating purposes. The test method for isolation of the free phenol applies to all the commonly used resins except those containing p-phenyl-phenol. Test Method A applies to the simpler phenols up to and including the xylenols; Test Method B applies to the common alkylated phenols. >1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. >

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method deals with the standards for the measurement of apparent viscosity of roofing bitumen by mean of a parallel plate plastometer. This method involves measuring viscosity using pre-determined arbitrary shear stress levels. The method involves molding the sample into a disc of specified dimensions, heating it to a selected temperature and placing it between the plates of a pre-heated apparatus and pressing under the standard conditions for a measured time.1.1 This test method covers the measurement of apparent viscosity of roofing bitumen by means of a parallel plate plastometer. This test method is applicable for a viscosity range from 102 to 109 Pa·s [103 to 1010 poises]. See Note 1.NOTE 1: This relatively simple test method of measuring viscosity uses predetermined, arbitrary shear stress levels. Since roofing bitumens are non-Newtonian, other viscosity test methods may give different results.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Apparent density as determined by this test method is a basic material property of importance in manufacturing and application of anode and cathode carbon.4.2 This test method can be used for quality and process control, material characterization and description, and other purposes.1.1 This test method covers the determination of the apparent density of core samples from manufactured articles of anode and cathode carbon used by the aluminum industry in the production of aluminum.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The principle of measurement is based upon a reversible isothermal change in apparent viscosity with change in rate of shear produced by a change in rotational speed.4.2 Measurement is performed with a rotational viscometer under standardized conditions with rigid control of the time intervals of measurement. Viscosity readings are obtained at the end of 1 min for each rotational speed. Changes from the lowest speed to the highest speed, and return to the lowest speed, are made without stopping the instrument.1.1 This test method covers the measurement of the apparent viscosity of shear-rate-dependent adhesives using a rotational viscometer.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the measurement of apparent density in pounds in air per U.S. gallon at convenient temperatures using a hydrometer, and reporting at any specified atmospheric temperature. 1.2 The following applies to all specified limits in this test method: for purposes of determining conformance with this test method, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E 29. 1.3 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7 and Note 3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Using a geotextile as a medium to retain soil particles necessitates compatibility between it and the adjacent soil. This test method is used to indicate the apparent opening size in a geotextile, which reflects the approximate largest opening dimension available for soil to pass through.5.2 Test Methods D4751 for the determination of opening size of geotextiles is acceptable for testing of commercial shipments of geotextiles. Current estimates of precision, between laboratories, have been established.5.3 Apparent opening test results obtained using Method A may differ from test results obtained with Method B. It is the intent of this test method to confirm the equivalency of the Method B results before permitting the use of this alternative. Laboratories electing the use of Method B must first determine any bias that exists between the two methods and document a reliable correlation in accordance with this test method.5.3.1 The correlation between the Method B results and the Method A results must be established and meet the requirements of this test method for every different geotextile product type tested with Method B. Geotextiles from different manufacturers or with different nominal unit weights are considered different products. A minimum of three test results must be compared with all three satisfying the established correlation.NOTE 1: The correlation should be confirmed for a particular product by comparing a minimum of three test results when there are changes in the manufacturing of a specific pre-qualified geotextile.5.4 In case of a dispute arising from differences in reported test results when using Test Methods D4751 for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student’s t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results in the light of the known bias.5.4.1 In the event that the dispute involves test results produced with the capillary porometer, Method A1 is considered the referee method for Test Methods D4751.1.1 These test methods cover the determination of the apparent opening size (AOS) of a geotextile either by dry-sieving glass beads through a geotextile (Methods A1 and A2) or by using a capillary porometer (Method B).1.2 Method B will not be used in lieu of Method A unless the pre-qualification procedure specified in this standard is followed.1.3 These test methods show the values in both SI units and inch-pound units. SI units is the technically correct name for the system of metric units known as the International System of Units. Inch-pound units is the technically correct name for the customary units used in the United States. The values in inch-pound units are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Specific gravity, apparent, may be used as a qualitative test in establishing the identity of a chemical. It may be used to calculate the volume occupied by a product whose weight is known, or to calculate the weight of a product from its volume. It may be used to determine the composition of binary mixtures of pure chemicals. In the case of most refined industrial chemicals specific gravity, apparent, is of minimal value in defining quality, although it may detect gross contamination.4.2 Of the two test methods described, the pycnometer method (Test Method B, 1.1.2) is the most accurate and precise. For this reason it is the preferred method in case of disputes. The hydrometer method (Test Method A, 1.1.1) is the least accurate and precise, but it is also the simplest and fastest to perform and is often entirely satisfactory for many purposes. If the sample is too viscous to permit the hydrometer to float freely, the pycnometer test method should be used.1.1 These test methods cover the determination of the specific gravity, apparent, of liquid industrial chemicals. Two test methods are covered as follows:1.1.1 Test Method A, specific gravity, apparent, by means of a hydrometer.1.1.2 Test Method B, specific gravity, apparent, by means of a pycnometer.NOTE 1: Test Method D4052 describes an instrumental procedure.1.2 In common usage the term specific gravity, apparent, is understood to mean specific gravity.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in these test methods with the exception of Fahrenheit (°F) in 5.1 as an example of a possible industrial specification unit.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Sections 8 and 16.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Apparent shear strength determined by this test method is useful for quality control and specification purposes. It is also applicable to research and development programs concerned with interlaminar-shear strength. The apparent shear strength obtained by this test method is not intended for design purposes, but allowed to be utilized for comparative testing of composite materials, if all failures are in horizontal shear.5.2 It is recommended that control samples be fabricated with each research test series and that care be used to compare each set of controls with corresponding test series run at different times.1.1 This test method covers the determination of the apparent horizontal shear strength of fiber reinforced plastic rods. The specimen is a short beam in the form of lengths of pultruded rods. This test method is applicable to all types of parallel-fiber-reinforced plastic rod samples.1.2 This test method is primarily used for quality control and specification purposes (see 5.1).1.3 The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

The apparent size and distribution of tungsten carbide grains in cemented carbides affects the material’wear resistance and fracture. For a given chemical composition, an increase in the average grain size will result in increased toughness and decreased wear resistance. This practice illustrates representative micro-structures for a wide range of tungsten carbide-cobalt grades. This is not intended to be used as a specification for carbide grades; producers and users may use the micrographs and the grain size chart as a guide in developing their own specifications.1.1 This practice for the visual comparison and classification of the apparent grain size and distribution of cemented tungsten carbides is limited to cemented tungsten carbides that contain approximately 6, 10, and 18 % cobalt.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

2.1 Material properties determined by this test method are useful for quality control of glass-fiber reinforced concrete, ascertaining compliance with governing specifications, and research and development.1.1 This test method covers the determinations of dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass-fiber reinforced concrete.NOTE 1: This test method does not involve a determination of absolute specific gravity. Therefore, such pore space as may be present in the specimen that is not emptied during the specified drying or is not filled with water during the specified immersion is considered “impermeable” and is not differentiated from the solid portion of the specimen for the calculations, especially those for percent voids.Depending upon the pore size distribution and the pore entry radii of the specimen and on the purposes for which the test results are desired, the procedures of this method may be adequate, or they may be insufficiently rigorous. In the event that it is desired to fill more of the pores than will be filled by immersion, various techniques involving the use of vacuum treatment or increased pressure may be used. If a rigorous measure of total pore space is desired, this can only be obtained by determining absolute specific gravity by first reducing the sample to discrete particles, each of which is sufficiently small so that no impermeable space can exist within any of the particles.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
58 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页