微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

A knowledge of spark-ignition engine fuel composition is useful for regulatory compliance, process control, and quality assurance.The quantitative determination of olefins and other hydrocarbon types in spark-ignition engine fuels is required to comply with government regulations.This test method is not applicable to M85 and E85 fuels, which contain 85 % methanol and ethanol, respectively.1.1 This test method provides for the quantitative determination of oxygenates, paraffins, olefins, naphthenes, and aromatics in low-olefin spark-ignition engine fuels by multidimensional gas chromatography. Each hydrocarbon type can be reported either by carbon number (see ) or as a total through C10, except for olefins, which can only be reported through C9. Higher boiling hydrocarbons cannot be reported by type and are reported as a composite group. The lower limit of detection for a single hydrocarbon component or carbon number type is 0.05 mass %.Note 1—There can be an overlap between the C9 and C10 aromatics; however, the total is accurate. Isopropyl benzene is resolved from the C8 aromatics and is included with the other C9 aromatics. Naphthalene is determined with the C11+ components.1.2 This test method is applicable for total olefins in the range from 0.05 to 13 mass %. The test method can quantitatively determine olefins in samples where the olefin concentration does not exceed 0.6 % C4 or 4.0 % C5 or 4.5 % of the combined C4 and C5. Although the precision for benzene was determined in the range from 0.3 to 1.0 mass %, this test method can be used to determine benzene concentrations up to 5.0 mass %.1.3 This test method is not intended to determine individual hydrocarbon components except for those hydrocarbon types for which there is only one component within a carbon number. Individually determined hydrocarbons are benzene, toluene, cyclopentane, propane, propylene, and cyclopentene.1.4 Precision data has only been obtained on samples containing MTBE. Application of this test method to determine other oxygenates shall be verified in the user's laboratory. Methanol cannot be determined and shall be quantitated by an appropriate oxygenate method such as Test Method D 4815 or D 5599. Methanol is fully resolved and does not interfere with the determination of other components or groups.1.5 Although specifically written for spark-ignition engine fuels containing oxygenates, this test method can also be applied to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.1.6 The values stated in SI units are to be regarded as the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Knowledge of the concentration of benzene may be required for regulatory use, control of gasoline blending, and/or process optimizations.1.1 This test method covers the quantitation in liquid volume percent of benzene and toluene in finished motor and aviation spark ignition fuels by gas chromatography. This test method has two procedures: Procedure A uses capillary column gas chromatography and Procedure B uses packed column gas chromatography. Procedures A and B have separate precisions.1.2 The method has been evaluated for benzene using a D6300-compliant Interlaboratory Study (ILS), with the lowest and highest ILS sample concentration means as follows: (1) Procedure A between 0.12 % and 5.2 % by volume and (2) Procedure B between 0.10 % and 5.0 % by volume.1.3 The method has been evaluated for toluene using a D6300-compliant Interlaboratory Study (ILS), with the lowest and highest ILS sample concentration means as follows: (1) Procedure A between 0.4 % and 19.7 % by volume, and (2) Procedure B between 2.0 % and 20.0 % by volume.1.4 For reporting, the lowest and highest concentration ranges for benzene and toluene for Procedure A of this test method per Practice D6300 see 13.2.1.5 For reporting, the lowest and highest concentration ranges for benzene and toluene for Procedure B of this test method per Practice D6300 see 25.2.1.6 For benzene by Procedure A, the following oxygenated fuels are included in the working range: (1) ethanol up to 20 % by volume (E20); (2) methanol up to 10 % by volume (M10). Fuels M85 and E85 were excluded.1.7 For benzene by Procedure B the following oxygenated fuels are included in the working range: (1) ethanol up to 20 % by volume (E20); (2) methanol up to 10 % by volume (M10). Fuels M85 and E85 were excluded.1.8 For toluene by Procedure A the following oxygenated fuels were included in the working range: (1) ethanol up to 20 % by volume (E20); (2) M85 and E85.1.9 For toluene by Procedure B the following oxygenated fuels are included in the working range: (1) ethanol up to 20 % by volume (E20); (2) M85 and E85.1.10 Procedure A uses MIBK as the internal standard. Procedure B uses sec-butanol as the internal standard. The use of Procedure B for fuels containing blended butanols requires that sec-butanol be below the detection limit in the fuels as sec-butanol is an internal standard. For Procedure B, an alternative separation column set described in the annex (A2.3, Annex Approach B) uses MEK as the internal standard when butanols may be blended into gasolines.1.11 This test method includes a between method bias section for benzene based on Practice D6708 bias assessment between Test Method D3606 Procedure B and Test Method D5769. It is intended to allow Test Method D3606 Procedure B to be used as a possible alternative to Test Method D5769. The Practice D6708 derived benzene correlation equation is applicable for benzene measurements in the reportable range from 0.06 % to 2.88 % by volume as reported by Test Method D3606 Procedure B (see 27.2.1). The correlation complies with EPA’s Performance Based Measurement System (PBMS).1.12 Correlation equations are included in the between test methods bias section 14.2.1 of Procedure A to convert Procedure A to the Procedure B volume percent values for benzene and toluene. The correlations are applicable in the concentration ranges of 0.07 % to 5.96 % by volume for benzene and 0.36 % to 20.64 % by volume for toluene as reported by Procedure A.1.13 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.14 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.15 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 The quantitative determination of olefins in spark-ignition engine fuels is required to comply with government regulations.5.2 Knowledge of the total olefin content provides a means to monitor the efficiency of catalytic cracking processes.5.3 This test method provides better precision for olefin content than Test Method D1319. It also provides data in a much shorter time, approximately 20 min following calibration, and maximizes automation to reduce operator labor.5.4 This test method is not applicable to M85 or E85 fuels, which contain 85 % methanol and ethanol, respectively.1.1 This test method provides for the quantitative determination of total olefins in the C4 to C10 range in spark-ignition engine fuels or related hydrocarbon streams, such as naphthas and cracked naphthas. Olefin concentrations in the range from 0.2 % by liquid-volume or mass to 5.0 % by liquid-volume or mass, or both, can be determined directly on the as-received sample whereas olefins in samples containing higher concentrations are determined after appropriate sample dilution prior to analysis.1.2 This test method is applicable to samples containing alcohols and ethers; however, samples containing greater than 15 % alcohol must be diluted. Samples containing greater than 5.0 % ether must also be diluted to the 5.0 % or less level, prior to analysis. When ethyl-tert-butylether is present, only olefins in the C4 to C9 range can be determined.1.3 This test method can not be used to determine individual olefin components.1.4 This test method can not be used to determine olefins having higher carbon numbers than C10.NOTE 1: Precision was determined only on samples containing MTBE and ethanol.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is used as a basis for determining the minimum ground-based octane requirement of turbocharged/supercharged aircraft engines by use of PRFs and RFs.5.2 Results from standardized octane ratings will play an important role in defining the octane requirement of a given aircraft engine, which can be applied in an effort to determine a fleet requirement.1.1 This practice covers ground-based octane rating procedures for turbocharged/supercharged spark ignition aircraft engines. This practice has been developed to allow the widest range of applicability possible but may not be appropriate for all engine types. This practice is specifically directed to ground-based testing and actual in-flight octane ratings may produce significantly different results.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

1.1 This standard describes a test method for evaluating the ignition sensitivity and fault tolerance of oxygen regulators used for medical and emergency applications.1.2 For the purpose of this standard, a pressure regulator is a device, also called a pressure-reducing valve, that is intended for medical or emergency purposes and that is used to convert a medical or emergency gas pressure from a high, variable pressure to a lower, more constant working pressure [21 CFR 868.2700 (a)].1.3 This standard applies only to oxygen regulators used for medical and emergency applications that are designed and fitted with CGA 870 pin-index adapters and CGA 540 inlet connections (CGA V-1).Note 1--Although this standard applies only to oxygen regulators used for medical or emergency applications, it may also apply to other types of oxygen regulators outside of this scope, at the discretion of the authority having jurisdiction.1.4 This standard provides an evaluation tool for determining the fault tolerance of oxygen regulators used for medical and emergency applications. A fault tolerant regulator is defined as 1) having a low probability of ignition as evaluated by rapid pressurization testing and 2) having a low consequence of ignition as evaluated by forced ignition testing.1.5 This standard is not a design standard; however, it can be used to aid designers in designing and evaluating the safe performance and fault tolerance capability of oxygen regulators used for medical and emergency applications (G 128).Note 2--It is essential that a risk assessment be carried out on breathing gas systems, especially concerning oxygen compatibility (refer to ASTM G 63 and G 94) and toxic product formation due to ignition or decomposition of nonmetallic materials as weighed against the risk of flammability (refer to ISO 15001.2). See Appendix X1 and Appendix X2.1 for details.1.6 This standard is also used to aid those responsible for purchasing or using oxygen regulators used for medical and emergency applications in ensuring that selected regulators are tolerant of the ignition mechanisms that are normally active in oxygen systems.1.7 This standard does not purport to address the ignition sensitivity and fault tolerance of an oxygen regulator caused by contamination during field maintenance. Regulator designers and manufacturers should provide design safeguards to minimize the potential for contamination or its consequences (G 88).1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers a fuel blend, nominally 51 to 83 volume % ethanol for use in ground vehicles equipped with ethanol fuel blend flexible-fuel spark-ignition engines. Ethanol fuel blends, also referred to as “Ethanol Flex Fuel” shall conform to the performance requirements prescribed. Ethanol fuel blends shall be visually free of sediment and suspended matter. The vapour pressure, acidity, pHe requirements, gum content, inorganic chloride, water requirements, copper requirements, and sulphur requirements shall be tested to meet the requirements prescribed.1.1 This specification covers the requirements for automotive fuel blends of ethanol and gasoline for use in ground vehicles equipped with ethanol fuel blend flexible-fuel spark-ignition engines. Fuel produced to this specification contains 51 % to 83 % by volume ethanol. This fuel is for use in flexible-fuel vehicles and is sometimes referred to at retail as “Ethanol Flex-Fuel.” Appendix X1 discusses the significance of the properties specified.1.2 The vapor pressure of ethanol fuel blends is varied for seasonal climatic changes. Vapor pressure is increased at lower temperatures to ensure adequate flexible-fuel vehicle operability. Ethanol content and selection of hydrocarbon blendstock are adjusted by the blender to meet these vapor pressure requirements.1.3 This specification formerly covered Fuel Ethanol (Ed70-Ed85) for Automotive Spark-Ignition Engines, also known commercially as E85. The nomenclature “fuel ethanol” has been changed to “ethanol fuel blends” to distinguish this product from denatured fuel ethanol Specification D4806. To facilitate blending of ethanol fuel blends that meet seasonal vapor pressure requirements, a new lower minimum ethanol content has been established.1.4 The United States government has established various programs for alternative fuels. Many of the definitions of alternative fuel used by these programs may be more restrictive than the requirements of this specification. See 4.1.2.1 for additional information on alternative fuels containing ethanol.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 The following safety hazard caveat pertains only to the test method portion, 8.1.8, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is used to obtain the ignition loss of a cured reinforced resin sample.NOTE 2: The basic concept of burning off of the organic matrix of a reinforced polymer composite has also been shown to be a useful method for enabling a visual examination of the fiber architecture or laminate structure of some reinforcements.4.2 If only glass fabric or filament is used as the reinforcement of an organic resin that is completely decomposed to volatile materials under the conditions of this test and the small amount of volatiles (water, residual solvent) that are potentially present are ignored, the ignition loss shall be considered to be the resin content of the sample.4.2.1 This test method does not provide a measure of resin content for samples containing reinforcing materials that lose weight under the conditions of the test or containing resins or fillers that do not decompose to volatile materials released by ignition.1.1 This test method covers the determination of the ignition loss of cured reinforced resins. This ignition loss shall be considered to be the resin content within the limitations of 4.2.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard is used to measure and describe the response of composite material to heat under controlled conditions, but does not by itself incorporate all of the factors required for fire hazard or fire assessments of the composite materials under actual fire conditions.1.4 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The test method is designed to show whether or not a material meets the specifications as given in Specifications C753 or C776.5.2 The powder’s stoichiometry is useful for predicting the oxide's sintering behavior in the pellet production process.1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets.1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material.1.3 This test method also is applicable to UO3 and U3O8 powder.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A baseline calibration oil (hereafter referred to as BC oil) has been established for this test to provide a standard against which all other oils can be compared. The BC oil is an SAE 5W-30 grade fully formulated lubricant. There is a direct correlation of Test Method D6837 (Sequence VIB) Fuel Economy Improvement (FEI) by percent with the fuel economy results obtained from vehicles representative of current production running under the current EPA testing cycles. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. Rather, it was developed to compare a test oil to BC oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIB test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API Publication 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight of 3856 kg or less. The tests are conducted on a dynamometer test stand using a specified spark-ignition engine with a displacement of 4.6-L. It applies to multiviscosity grade oils used in these applications.1.2 This test method also provides for the running of an abbreviated length test that is referred to as the VIBSJ. The procedure for VIBSJ is identical to the Sequence VIB with the exception of the items specifically listed in Annex A13. The procedure modifications listed in Annex A13 refer to the corresponding section of the Sequence VIB test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exceptions—Where there is no direct SI equivalent such as screw threads, National Pipe Threads/diameters, tubing size, or single source supply equipment specifications. Brake Specific Fuel Consumption is measured in kilograms per kilowatthour. In Figs. A2.4, A2.5, and A2.8, inch-pound units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This test method is arranged as follows:Subject SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6 General 6.1 Test Engine Configuration 6.2 Laboratory Ambient Conditions 6.3 Engine Speed and Torque Control 6.4  Dynamometer 6.4.1  Dynamometer Torque 6.4.2 Engine Cooling System 6.5 External Oil System 6.6 Fuel System 6.7  Fuel Flow Measurement 6.7.2  Fuel Temperature and Pressure Control to   the Fuel Flowmeter 6.7.3  Fuel Temperature and Pressure Control to   Engine Fuel Rail 6.7.4 Fuel Supply Pumps 6.7.5  Fuel Filtering 6.7.6 Engine Intake Air Supply 6.8  Intake Air Humidity 6.8.1  Intake Air Filtration 6.8.2  Intake Air Pressure Relief 6.8.3 Temperature Measurement 6.9  Thermocouple Location 6.9.5 AFR Determination 6.10 Exhaust and Exhaust Back Pressure Systems 6.11  Exhaust Manifolds 6.11.1  Laboratory Exhaust System 6.11.2  Exhaust Back Pressure 6.11.3 Pressure Measurement and Pressure Sensor  Locations 6.12  Engine Oil 6.12.2  Fuel to Fuel Flowmeter 6.12.3  Fuel to Engine Fuel Rail 6.12.4  Exhaust Back Pressure 6.12.5  Intake Air 6.12.6  Intake Manifold Vacuum/Absolute Pressure 6.12.7  Coolant Flow Differential Pressure 6.12.8  Crankcase Pressure 6.12.9 Engine Hardware and Related Apparatus 6.13  Test Engine Configuration 6.13.1  ECM/EEC (Engine Control) Module 6.13.2  Thermostat/Orifice Plate 6.13.3  Intake Manifold 6.13.4  Flywheel 6.13.5  Wiring Harnesses 6.13.6  EGR Block-Off Plate 6.13.7  Oil Pan 6.13.8  Oil Pump Screen and Pickup Tube 6.13.9  Idle Speed Control Solenoid (ISC) Block-Off   Plate 6.13.10  Engine Water Pump 6.13.11  Thermostat Housing 6.13.12  Oil Filter Adapter 6.13.13  Fuel Rail 6.13.14 Miscellaneous Apparatus Related to Engine  Operation 6.14  Timing Light 6.14.1Reagents and Materials 7 Engine Oil 7.1 Test Fuel 7.2 Engine Coolant 7.3 Cleaning Materials 7.4Preparation of Apparatus 8 Test Stand Preparation 8.2Engine Preparation 9 Cleaning of Engine Parts 9.2 Engine Assembly Procedure 9.3  General Assembly Instructions 9.3.1  Bolt Torque Specifications 9.3.2  Sealing Compounds 9.3.3  Harmonic Balancer 9.3.5  Oil Pan 9.3.6  Intake Manifold 9.3.7  Camshaft Covers 9.3.8  Thermostat 9.3.9  Thermostat Housing 9.3.10  Coolant Inlet 9.3.11  Oil Filter Adapter 9.3.12  Dipstick Tube 9.3.13  Water Pump 9.3.14  Sensors, Switches, Valves, and Positioners 9.3.15  Ignition System 9.3.16  Fuel Injection System 9.3.17  Intake Air System 9.3.18  Engine Management System (Spark and Fuel   Control) 9.3.19  Accessory Drive Units 9.3.20  Exhaust Manifolds 9.3.21  Engine Flywheel and Guards 9.3.22  Lifting of Assembled Engines 9.3.23  Engine Mounts 9.3.24Calibration 10 Stand/Engine Calibration 10.1  Procedure 10.1.1  Reporting of Reference Results 10.1.2  Analysis of Reference/Calibration Oils 10.1.3  Instrument Calibration 10.2  Engine Torque Measurement System 10.2.1  Fuel Flow Measurement System 10.2.2  Coolant Flow Measurement System 10.2.3  Thermocouple and Temperature Measurement   System 10.2.4  Humidity Measurement System 10.2.5  Other Instrumentation 10.2.6Test Procedure 11 Preparation for Initial Start-up of New Engine 11.1  External Oil System 11.1.1  Flush Effectiveness Demonstration 11.1.2  Preparation for Oil Charge 11.1.3  Oil Charge for Coolant Flush 11.1.4  Engine Coolant Charge for Coolant Flush 11.1.5 Initial Engine Start-up 11.2 Coolant Flush 11.3 New Engine Break-In 11.4  Oil Charge for Break-In 11.4.2  Break-In Operating Conditions 11.4.3 Routine Test Operation 11.5  Start-Up and Shutdown Procedures 11.5.8  Flying Flush Oil Exchange Procedures 11.5.9  Test Operating Stages 11.5.10  Stabilization to Stage Conditions 11.5.11  Stabilized BSFC Measurement Cycle 11.5.12  Data Logging 11.5.13  BC Oil Flush Procedure for BC Oil Before Test   Oil 11.5.14 BSFC Measurement of BC Oil Before Test Oil 11.5.15  Test Oil Flush Procedure 11.5.16  Test Oil Aging 11.5.17  BSFC Measurement of Aged (Phase I) Test Oil 11.5.18  Aging Phase II 11.5.19  BSFC Measurement of Aged (Phase II) Test Oil 11.5.21  BC Oil Flush Procedure for BC Oil After Test Oil 11.5.22  BSFC Measurement for BC Oil After Test Oil 11.5.23  General Test Data Logging Forms 11.5.24  Diagnostic Review Procedures 11.5.25 Determination of Test Results 12  FEI1 and FEI2 Calculations 12.1 Final Test Report 13  Validity Statement 13.1  Report Format 13.2Precision and Bias 14 Precision 14.1 Validity 14.2  Test Stand Calibration Status 14.2.1  Validity Interpretation of Deviant Operational   Conditions 14.2.2 Bias 14.3Keywords 15   Annexes  Role of ASTM TMC Annex A1Detailed Specifications and Drawings of Apparatus Annex A2Oil Heater Cerrobase Refill Procedure Annex A3Engine Part Number Listing Annex A4Flying Flush Checklists Annex A5Safety Precautions Annex A6Report Format Annex A7Statistical Equations for Mean and Standard Deviations Annex A8Oil Sump Full Level Determination Consumption Measurement Calibration Procedure Annex A9Fuel Injector Evaluation Annex A10Pre-test Maintenance Checklist Annex A11Blow-by Ventilation System Requirements Annex A12VIBSJ Abbreviated Length Test Requirements Annex A13   Appendix  Procurement of Test Materials Appendix X1

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The autoignition temperature (AIT) of a gas mixture is the minimum temperature at which a gas mixture spontaneously ignites without an external ignition source. AIT is typically determined at atmospheric pressure, using small test vessels open to the atmosphere where gas is quickly injected into the test vessel and heated for a pre-determined time observing ignition or non-ignition (Test Method E659). AIT is often not directly applicable to real world conditions. Therefore, there is need for a test that determines if a gas or liquefied gas ignites or does not ignite when released onto a hot surface in a more unconstrained environment.1.1 This test method covers a means for the discrimination between gases, which will ignite or not ignite when impinged on a hot surface when that surface is heated to 800 °C (1472 °F) or greater for a period of 2 min in a non-confined environment.1.2 This test method may be applied to any non-pyrophoric substance that is a gas or liquefied gas, particularly GHS category 1B gases, at ambient temperature and pressure.1.3 This test method should be used subject to the limitations that no single fire hazard property such as flash point, auto-ignition temperature (AIT), or the performance under the conditions of the present method shall be used to describe or appraise the fire hazard or fire risk of a material, product, assembly, or system under actual fire conditions. Fire hazard properties measured under controlled laboratory conditions may nevertheless be employed to describe properly the response of materials, products, assemblies, or systems under said controlled conditions. Properties measured under controlled laboratory conditions may be used as elements of hazard or risk assessment only when such assessments takes into account all of the factors that are pertinent to the evolution of the fire hazard of a given situation.1.4 This standard is used to provide a quantitative measure of a gas’s or liquefied gas’s realistic surface ignition temperature in a non-quiescent environment.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers an engine test procedure for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, sludge and varnish deposition, and oil consumption, as well as engine wear. Such oils include both single viscosity grade and multiviscosity grade oils which are used in both spark-ignition, gasoline-fueled engines, as well as in diesel engines. Note 1-Companion test methods used to evaluate engine oil performance for specification requirements are discussed in SAE J304. 1.2 The values stated in either acceptable metric units or in other units shall be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system must be used independently of the other, without combining values in any way. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 This test method is arranged as follows: Subject Section Introduction 1 Referenced Documents 2 Terminology 3 Summary of Test Method 4 Significance and Use 5 Apparatus 6 Laboratory 6.1 Drawings 6.2 Specified Equipment 6.3 Test Engine 6.4 Engine Parts 6.4.1 Hold-Back Fixture 6.4.2 Engine Speed and Load Control 6.5 Engine Cooling System 6.6 Flushing Tank 6.7 Coolant Mixing Tank 6.8 Jacketed Rocker Cover, Intake Manifold Crossover, and Breather Tube Cooling Systems 6.9 External Oil-Cooling System 6.10 Fuel System 6.11 Carburetor Air Supply Humidity, Temperature, and Pressure 6.12 Temperature Measurement 6.13 Thermocouple Location 6.13.1 Air-to-Fuel Ratio Determination 6.14 Exhaust and Exhaust Back Pressure Systems 6.15 Blowby Flow Rate Measurement 6.16 Pressure Measurement and Pressure Sensor Location 6.17 Reagents and Materials 7. Test Fuel 7.1 Additive Concentrate for the Coolant 7.2 Coolant Preparation 7.3 Pre-Test Cleaning Materials 7.4 Post-Test Cleaning Materials 7.5 Sealing and Anti-seize Compounds 7.6 Hazards 8 Test Oil Sample Requirements 9 Preparation of Apparatus 10 Oil Heat Exchanger Cleaning 10.1 Jacketed Rocker Cover Cleaning 10.2 Breather Tube Cleaning 10.3 Cleaning of Special Stainless Steel Parts 10.4 Intake Manifold Cleaning 10.5 Precision Rocker Shaft Follower Cleaning 10.6 Cleaning of Engine Parts (other than the block and heads) 10.7 Engine Block Cleaning 10.8 Cylinder Head Cleaning 10.9 Engine Build-up Procedure 10.10 General Information 10.10.1 Special Parts 10.10.2 Hardware Information 10.10.3 Sealing Compound Applications 10.10.4 Fastener Torque Specifications and Torquing Procedures 10.10.5 Main Bearing Cap Bolts 10.10.5.1 Cylinder Head Bolts 10.10.5.2 Intake Manifold Bolts 10.10.5.3 Torques for Miscellaneous Bolts, Studs, and Nuts 10.10.5.4 Parts Replacement 10.10.6 Engine Block Preparation 10.10.7 Piston Fitting and Numbering 10.10.8 Piston Ring Fitting 10.10.9 Pre-Test Camshaft and Lifter Measurements 10.10.10 Camshaft Bearing Installation 10.10.11 Camshaft Preparation 10.10.12 Camshaft Installation 10.10.13 Installation of Camshaft Hold-Back Fixture 10.10.14 Camshaft Sprocket, Crankshaft Sprocket, and Chain 10.10.15 Camshaft Thrust Button 10.10.16 Main Bearings 10.10.17 Crankshaft 10.10.18 Main Bearing Cap Installation 10.10.19 Crankshaft End Play 10.10.20 Piston Pin Installation 10.10.21 Piston Installation 10.10.22 Harmonic Balancer 10.10.23 Connecting Rod Bearings 10.10.24 Engine Front Cover 10.10.25 Coolant Inlet Adapter 10.10.26 Timing Mark Accuracy 10.10.27 Oil Pump 10.10.28 Oil Dipstick Hole 10.10.29 Oil Pan 10.10.30 Cylinder Head Assembly 10.10.31 Adjustment of Valve Spring Loads 10.10.32 Cylinder Head Installation 10.10.33 Hydraulic Valve Lifters 10.10.34 Pushrods 10.10.35 Precision Rocker Shaft Assembly 10.10.36 Valve Train Loading 10.10.37 Intake Manifold 10.10.38 Rocker Cover Deflectors and Stanchions 10.10.39 Rocker Covers 10.10.40 Water Inlet Adapter 10.10.41 Breather Tube 10.10.42 Coolant Outlet Adapter 10.10.43 Oil Fill Adapter 10.10.44 Oil Filter Adapter 10.10.45 Oil Sample Valve 10.10.46 Ignition System 10.10.47 Carburetor 10.10.48 Accessory Drive Units 10.10.49 Exhaust Manifolds, Water-Cooled 10.10.50 Engine Flywheel 10.10.51 Pressure Checking of Engine Coolant System 10.10.52 Lifting of Assembled Engines 10.11 Mounting the Engine on the Test Stand 10.12 External Cooling System Cleaning 10.13 Engine Coolant Jacket and Intake Manifold Coolant Crossover Cleaning (Flushing) 10.14 Coolant Charging 10.15 Test Oil Charging 10.16 Engine Oil Pump Priming and Cam-and-Lifter Pre- Test Lubrication 10.17 Calibration 11 Laboratory and Engine Test Stand Calibration 11.1 Testing of Reference Oils 11.1.1 Reference Oil Test Frequency 11.1.2 Reporting of Reference Oil Test Results 11.1.3 Evaluation of Reference Oil Test Results 11.1.4 Status of Non-reference Oil Tests Relative to Reference Oil Tests 11.1.5 Status of Test Stands Used for Non-Standard Tests 11.1.6 Instrumentation Calibration 11.2 Engine Operating Procedure 12 Dipstick and Hole Plug 12.1 Oil Fill Adapter 12.2 Carburetor Air Inlet Supply Line 12.3 Engine Start-up and Shutdown Procedures 12.4 Start-up 12.4.1 Shutdown 12.4.2 Non-Scheduled Shutdowns 12.4.3 Oil Sampling 12.5 Oil Leveling 12.6 Checks for Glycol Contamination 12.7 Air-to-Fuel-Ratio Measurement and Control 12.8 Blowby Flow Rate Measurement 12.9 NOx Determinations 12.10 Data Recording 12.11 Ignition Timing Run (Ten Minutes) 12.12 Break-In (4 Hours) 12.13 Engine Oil Quality Testing (64 Hours) 12.14 Test Termination 12.15 Determination of Test Results 13 Engine Disassembly 13.2 Preparation of Parts for Rating of Sticking, Deposits, and Plugging 13.3 Rating Environment 13.4 Part Sticking 13.5 Sludge Rating 13.6 Piston Skirt Deposits Rating 13.7 Oil Ring Land Deposits Rating 13.8 Part Plugging Observations 13.9 Visual Inspection for Scuffing and Wear 13.10 Post-Test Camshaft and Lifter Wear Measurements 13.11 Connecting Rod Bearing Weight Loss 13.12 Viscosity Test 13.13 Blowby Flow Rate Measurements 13.14 Oil Consumption Computation 13.15 Photographs of Test Parts 13.16 Retention of Representative Test Parts 13.17 Severity Adjustments 13.18 Determination of Operational Validity 13.19 Report 14 Report Forms 14.1 Use of SI Units 14.2 Precision of Reported Units 14.3 Deviations from Test Operational Limits 14.4 Oil Pressure Plot 14.5 Precision and Bias 15 Keywords 16 Annexes The Role of the ASTM Test Monitoring Center (TMC) and the Calibration Program A1 Sequence IIIE Engine Test Parts A2 Sequence IIIE Test Parts and Drawings A3 Sequence IIIE Test Fuel Analysis A4 Sequence IIIE Test Control Chart Technique for Developing and Applying Severity Adjustments A5 Sequence IIIE Test Reporting A6 Sequence IIIE Test Air-to-Fuel Ratio A7 Sequence IIIE Test Blowby Flow Rate Correction Factor A8 Appendixes Sequence IIIE Test-Engine Build Measurement Worksheets X1 Sequence IIIE Test-Pre- and Post-Test Measurements X2 Sequence IIIE Test-Cam Lobe Oiling Wand X3 Sequence IIIE Test-Operational Logs, Checklists, and Worksheets X4 Sequence IIIE Test-Rating Worksheets X5

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 A knowledge of spark-ignition engine fuel composition is useful for regulatory compliance, process control, and quality assurance.5.2 The quantitative determination of olefins and other hydrocarbon types in spark-ignition engine fuels is required to comply with government regulations.5.3 This test method is not applicable to M85 fuels, which contain 85 % methanol.1.1 This test method covers the quantitative determination of saturates, olefins, aromatics, and oxygenates in spark-ignition engine fuels by multidimensional gas chromatography. Each hydrocarbon type can be reported either by carbon number (see Note 1) or as a total.NOTE 1: There can be an overlap between the C9 and C10 aromatics; however, the total is accurate. Isopropyl benzene is resolved from the C8 aromatics and is included with the other C9 aromatics.1.2 This test method is not intended to determine individual hydrocarbon components except benzene and toluene.1.3 This test method is divided into two parts, Part A and Part B.1.3.1 Part A is applicable to the concentration ranges for which precision (Table 10 and Table 11) has been obtained:Property Units Applicable rangeTotal aromatics Volume % 19.32 to 46.29Total saturates Volume % 26.85 to 79.31Total olefins Volume % 0.40 to 26.85Oxygenates Volume % 0.61 to 9.85Oxygen Content Mass % 2.01 to 12.32Benzene Volume % 0.38 to 1.98Toluene Volume % 5.85 to 31.65Methanol Volume % 1.05 to 16.96Ethanol Volume % 0.50 to 17.86MTBE Volume % 0.99 to 15.70ETBE Volume % 0.99 to 15.49TAME Volume % 0.99 to 5.92TAEE Volume % 0.98 to 15.591.3.1.1 This test method is specifically developed for the analysis of automotive motor gasoline that contains oxygenates, but it also applies to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.1.3.2 Part B describes the procedure for the analysis of oxygenated groups (ethanol, methanol, ethers, C3 to C5 alcohols) in ethanol fuels containing an ethanol volume fraction between 50 % and 85 % (17 % to 29 % oxygen). The gasoline is diluted with an oxygenate-free component to lower the ethanol content to a value below 20 % before the analysis by GC. The diluting solvent should not be considered in the integration, this makes it possible to report the results of the undiluted sample after normalization to 100 %.1.4 Oxygenates as specified in Test Method D4815 have been verified not to interfere with hydrocarbons. Within the round robin sample set, the following oxygenates have been tested: MTBE, ethanol, ETBE, TAME, iso-propanol, isobutanol, tert-butanol and methanol. Applicability of this test method has also been verified for the determination of n-propanol, acetone, and di-isopropyl ether (DIPE). However, no precision data have been determined for these compounds.1.4.1 Other oxygenates can be determined and quantified using Test Method D4815 or D5599.1.5 The method is harmonized with ISO 22854.1.6 This test method includes a relative bias section for U.S. EPA spark-ignition engine fuel regulations for total olefins reporting based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D1319 as a possible Test Method D6839 alternative to Test Method D1319. The Practice D6708 derived correlation equation is only applicable for fuels in the total olefins concentration range from 0.2 % to 18.2 % by volume as measured by Test Method D6839. The applicable Test Method D1319 range for total olefins is from 0.6 % to 20.6 % by volume as reported by Test Method D1319.1.7 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D3606 (Procedure B) as a possible Test Method D6839 alternative to Test Method D3606 (Procedure B). The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.8 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5580 as a possible Test Method D6839 alternative to Test Method D5580. The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.9 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5769 as a possible Test Method D6839 alternative to Test Method D5769. The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.10 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D1319 as a possible Test Method D6839 alternative to Test Method D1319. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 31.2 % by volume as measured by Test Method D6839.1.11 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5580 as a possible Test Method D6839 alternative to Test Method D5580. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 31.2 % by volume as measured by Test Method D6839.1.12 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5769 as a possible Test Method D6839 alternative to Test Method D5769. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 30.1 % by volume as measured by Test Method D6839.1.13 This test method includes a relative bias section for reporting total olefins based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D6550 as a possible Test Method D6839 alternative to Test Method D6550. The Practice D6708 derived correlation equation is only applicable for fuels in the total olefins concentration range from 1.5 % to 17.2 % by volume as measured by Test Method D6839.1.14 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.15 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.16 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product or introduced into the fuel during storage and distribution, some can have a corroding action on various metals and this corrosivity is not necessarily related directly to the total sulfur content. The effect can vary according to the chemical types of sulfur compounds present. The silver strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product towards silver and silver alloys.5.2 Under some circumstances, reactive sulfur compounds present in automotive spark-ignition engine fuels can tarnish or even corrode silver alloy fuel gauge in-tank sender units or silver-plated bearings (in 2-stroke cycle engines). To minimize or prevent the failure of silver alloy in-tank sender units by tarnish or corrosion, Specification D4814 requires that fuels shall pass a silver strip corrosion test.1.1 This test method covers the determination of the corrosiveness to silver by automotive spark-ignition engine fuel (for example, gasoline), as defined by Specification D4814 or similar specifications in other jurisdictions, having a vapor pressure no greater than 124 kPa (18 psi) at 37.8 °C (100 °F) by one of two procedures.1.1.1 Procedure A—Involves the use of a pressure vessel.1.1.2 Procedure B—Involves the use of a vented test tube.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The ID and CD values and the DCN value determined by this test method provides a measure of the ignition characteristics of diesel fuel oil used in compression ignition engines.5.2 This test can be used by engine manufacturers, petroleum refiners and marketers, and in commerce as a specification aid to relate or match fuels and engines.5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood.5.4 This test can be applied to non-conventional diesel fuels.5.5 This test determines ignition characteristics and requires a sample of approximately 370 mL and a test time of approximately 30 min using a fit-for-use instrument.1.1 This test method covers the quantitative determination of the derived cetane number of conventional diesel fuel oils, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of Specification D975, Grades No.1-D and 2-D regular, low and ultra-low-sulfur diesel fuel oils, European standard EN590, and Canadian standards CAN/CGSB-3.517, CAN/CGSB-3.520, and CAN/CGSB-3.522. The test method may be applied to the quantitative determination of the derived cetane number of biodiesel, blends of diesel fuel oils containing biodiesel material (for example, Specifications D975, D6751, and D7467), and diesel fuel oil blending components.1.2 This test method utilizes a constant volume combustion chamber with direct fuel injection into heated, compressed synthetic air. A dynamic pressure wave is produced from the combustion of the sample. An equation converts the ignition delay and the combustion delay determined from the dynamic pressure curve to a derived cetane number (DCN).1.3 This test method covers the ignition delay ranging from 1.9 ms to 25 ms and combustion delay ranging from 2.5 ms to 160 ms (30 DCN to 70 DCN). However, the precision stated only covers the range of DCN results from 38.45 to 64.35.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product, some can have a corroding action on various metals and this corrosivity is not related to the total sulfur content. In addition, fuels can become contaminated by corrosive sulfur compounds during storage and distribution. The corrosive effect can vary according to the chemical types of sulfur compounds present.4.2 The silver strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product towards silver and silver alloys.4.3 Reactive sulfur compounds present in automotive spark-ignition engine fuels under some circumstances can corrode or tarnish silver alloy fuel gauge in-tank sender units (and silver-plated bearings in some 2-stroke cycle engines). To minimize or prevent the failure of silver alloy in-tank sender units by corrosion or tarnish, Specification D4814 requires that fuels shall pass the silver strip corrosion test.1.1 This test method covers the determination of the corrosiveness to silver by automotive spark-ignition engine fuel, as defined by Specification D4814, or similar specifications in other jurisdictions, having a vapor pressure no greater than 124 kPa (18 psi) at 37.8 °C (100 °F), by one of two procedures. Procedure A involves the use of a pressure vessel, whereas Procedure B involves the use of a vented test tube.1.2 The result of the test is based on a visual rating that is classified as an integer in the range from 0 to 4 as defined in Table 1.1.3 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 6.1 and Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
110 条记录,每页 15 条,当前第 2 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页