微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Reactor vessels made of ferritic steels are designed with the expectation of progressive changes in material properties resulting from in-service neutron exposure. In the operation of light-water-cooled nuclear power reactors, changes in pressure-temperature (P – T) limits are made periodically during service life to account for the effects of neutron radiation on the ductile-to-brittle transition temperature material properties. If the degree of neutron embrittlement becomes large, the restrictions on operation during normal heat-up and cool down may become severe. Additional consideration should be given to postulated events, such as pressurized thermal shock (PTS). A reduction in the upper shelf toughness also occurs from neutron exposure, and this decrease may reduce the margin of safety against ductile fracture. When it appears that these situations could develop, certain alternatives are available that reduce the problem or postpone the time at which plant restrictions must be considered. One of these alternatives is to thermally anneal the reactor vessel beltline region, that is, to heat the beltline region to a temperature sufficiently above the normal operating temperature to recover a significant portion of the original fracture toughness and other material properties that were degraded as a result of neutron embrittlement.3.2 Preparation and planning for an in-service anneal should begin early so that pertinent information can be obtained to guide the annealing operation. Sufficient time should be allocated to evaluate the expected benefits in operating life to be gained by annealing; to evaluate the annealing method to be employed; to perform the necessary system studies and stress evaluations; to evaluate the expected annealing recovery and reembrittlement behavior; to develop and functionally test such equipment as may be required to do the in-service annealing; and, to train personnel to perform the anneal.3.3 Selection of the annealing temperature requires a balance of opposing conditions. Higher annealing temperatures, and longer annealing times, can produce greater recovery of fracture toughness and other material properties and thereby increase the post-anneal lifetime. The annealing temperature also can have an impact on the reembrittlement trend after the anneal. On the other hand, higher temperatures can create other undesirable property effects such as permanent creep deformation or temper embrittlement. These higher temperatures also can cause engineering difficulties, that is, core and coolant removal and storage, localized heating effects, etc., in preventing the annealing operation from distorting the vessel or damaging vessel supports, primary coolant piping, adjacent concrete, insulation, etc. See ASME Code Case N-557 for further guidance on annealing conditions and thermal-stress evaluations (2).3.3.1 When a reactor vessel approaches a state of embrittlement such that annealing is considered, the major criterion is the number of years of additional service life that annealing of the vessel will provide. Two pieces of information are needed to answer the question: the post-anneal adjusted RTNDT and upper shelf energy level, and their subsequent changes during future irradiation. Furthermore, if a vessel is annealed, the same information is needed as the basis for establishing pressure-temperature limits for the period immediately following the anneal and demonstrating compliance with other design requirements and the PTS screening criteria. The effects on upper shelf toughness similarly must be addressed. This guide primarily addresses RTNDT changes. Handling of the upper shelf is possible using a similar approach as indicated in NRC Regulatory Guide 1.162. Appendix X1 provides a bibliography of existing literature for estimating annealing recovery and reembrittlement trends for these quantities as related to U.S. and other country pressure-vessel steels, with primary emphasis on U.S. steels.3.3.2 A key source of test material for determining the post-anneal RTNDT, upper shelf energy level, and the reembrittlement trend is the original surveillance program, provided it represents the critical materials in the reactor vessel.6 Appendix X2 describes an approach to estimate changes in RTNDT both due to the anneal and reirradiation. The first purpose of Appendix X2 is to suggest ways to use available materials most efficiently to determine the post-anneal RTNDT and to predict the reembrittlement trend, yet leave sufficient material for surveillance of the actual reembrittlement for the remaining service life. The second purpose is to describe alternative analysis approaches to be used to assess test results of archive (or representative) materials to obtain the essential post-anneal and reirradiation RTNDT, upper shelf energy level, or fracture toughness, or a combination thereof.3.3.3 An evaluation must be conducted of the engineering problems posed by annealing at the highest practical temperature. Factors required to be investigated to reduce the risk of distortion and damage caused by mechanical and thermal stresses at elevated temperatures to relevant system components, structures, and control instrumentation are described in 5.1.3 and 5.1.4.3.4 Throughout the annealing operation, accurate measurement of the annealing temperature at key defined locations must be made and recorded for later engineering evaluation.3.5 After the annealing operation has been carried out, several steps should be taken. The predicted improvement in fracture toughness properties must be verified, and it must be demonstrated that there is no damage to key components and structures.3.6 Further action may be required to demonstrate that reactor vessel integrity is maintained within ASME Code requirements such as indicated in the referenced ASME Code Case N-557 (2). Such action is beyond the scope of this guide.AbstractThis guide covers the general procedures to be considered (as well as the demonstration of their effectiveness) for conducting in-service thermal anneals of light-water moderated nuclear reactor vessels. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods, as well as to provide direction for the development of a vessel annealing procedure and a post-annealing vessel radiation surveillance program. Guidelines are provided to determine the post-anneal reference nil-ductility transition temperature (RTNDT), the Charpy V-notch upper shelf energy level, fracture toughness properties, and the predicted reembrittlement trend for these properties for reactor vessel beltline materials.1.1 This guide covers the general procedures for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1).21.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constraints resulting from attached piping, support structures, and the primary system shielding; the mechanical and thermal stresses in the components and the system as a whole; and, material condition changes that may limit the annealing temperature.1.3 This guide provides direction for development of the vessel annealing procedure and a post-annealing vessel radiation surveillance program. The development of a surveillance program to monitor the effects of subsequent irradiation of the annealed-vessel beltline materials should be based on the requirements and guidance described in Practices E185 and E2215. The primary factors to be considered in developing an effective annealing program include the determination of the feasibility of annealing the specific reactor vessel; the availability of the required information on vessel mechanical and fracture properties prior to annealing; evaluation of the particular vessel materials, design, and operation to determine the annealing time and temperature; and, the procedure to be used for verification of the degree of recovery and the trend for reembrittlement. Guidelines are provided to determine the post-anneal reference nil-ductility transition temperature (RTNDT), the Charpy V-notch upper shelf energy level, fracture toughness properties, and the predicted reembrittlement trend for these properties for reactor vessel beltline materials. This guide emphasizes the need to plan well ahead in anticipation of annealing if an optimum amount of post-anneal reembrittlement data is to be available for use in assessing the ability of a nuclear reactor vessel to operate for the duration of its present license, or qualify for a license extension, or both.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 In neutron dosimetry, a fission or non-fission dosimeter, or combination of dosimeters, can be used for determining a fluence rate, fluence, or neutron spectrum in nuclear reactors. Each dosimeter is sensitive to a specific energy range, and, if desired, increased accuracy in a fluence-rate spectrum can be achieved by the use of several dosimeters each covering specific neutron energy ranges.4.2 A wide variety of detector materials is used for various purposes. Many of these substances overlap in the energy of the neutrons which they will detect, but many different materials are used for a variety of reasons. These reasons include available analysis equipment, different cross sections for different fluence-rate levels and spectra, preferred chemical or physical properties, and, in the case of radiometric dosimeters, varying requirements for different half-life isotopes, possible interfering activities, and chemical separation requirements.1.1 This guide covers the selection, design, irradiation, post-irradiation handling, and quality control of neutron dosimeters (sensors), thermal neutron shields, and capsules for reactor surveillance neutron dosimetry.1.2 The values stated in SI units are to be regarded as standard. Values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The objectives of a reactor vessel surveillance program are twofold. The first requirement of the program is to monitor changes in the fracture toughness properties of ferritic materials in the reactor vessel beltline region resulting from exposure to neutron irradiation and the thermal environment. The second requirement is to make use of the data obtained from the surveillance program to determine the conditions under which the vessel can be operated throughout its service life.3.1.1 To satisfy the first requirement of 3.1, the tasks to be carried out are straightforward. Each of the irradiation capsules that comprise the surveillance program may be treated as a separate experiment. The goal is to define and carry to completion a dosimetry program that will, a posteriori, describe the neutron field to which the material test specimens were exposed. The resultant information will then become part of a database applicable in a stricter sense to the specific plant from which the capsule was removed, but also in a broader sense to the industry as a whole.3.1.2 To satisfy the second requirement of 3.1, the tasks to be carried out are somewhat complex. The objective is to describe accurately the neutron field to which the pressure vessel itself will be exposed over its service life. This description of the neutron field must include spatial gradients within the vessel wall. Therefore, heavy emphasis must be placed on the use of neutron transport techniques as well as on the choice of a design basis for the computations. Since a given surveillance capsule measurement, particularly one obtained early in plant life, is not necessarily representative of long-term reactor operation, a simple normalization of neutron transport calculations to dosimetry data from a given capsule may not be appropriate (1-67).3.2 The objectives and requirements of a reactor vessel's support structure's surveillance program are much less stringent, and at present, are limited to physics-dosimetry measurements through ex-vessel cavity monitoring coupled with the use of available test reactor metallurgical data to determine the condition of any support structure steels that might be subject to neutron induced property changes (1, 29, 44-58, 65-70).1.1 This practice covers the methodology, summarized in Annex A1, to be used in the analysis and interpretation of neutron exposure data obtained from LWR pressure vessel surveillance programs and, based on the results of that analysis, establishes a formalism to be used to evaluate present and future condition of the pressure vessel and its support structures2 (1-74).31.2 This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods (see Master Matrix E706) (1, 5, 13, 48, 49).2 In order to make this practice at least partially self-contained, a moderate amount of discussion is provided in areas relating to ASTM and other documents. Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, and exposure units.1.3 This practice is restricted to direct applications related to surveillance programs that are established in support of the operation, licensing, and regulation of LWR nuclear power plants. Procedures and data related to the analysis, interpretation, and application of test reactor results are addressed in Practice E1006, Guide E900, and Practice E1035.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Regulatory Requirements—The USA Code of Federal Regulations (10CFR Part 50, Appendix H) requires the implementation of a reactor vessel materials surveillance program for all operating LWRs. Other countries have similar regulations. The purpose of the program is to (1) monitor changes in the fracture toughness properties of ferritic materials in the reactor vessel beltline6 resulting from exposure to neutron irradiation and the thermal environment, and (2) make use of the data obtained from surveillance programs to determine the conditions under which the vessel can be operated with adequate margins of safety throughout its service life. Practice E185, derived mechanical property data, and (r, θ, z) physics-dosimetry data (derived from the calculations and reactor cavity and surveillance capsule measurements (1) using physics-dosimetry standards) can be used together with information in Guide E900 and Refs. 4, 11-18 to provide a relation between property degradation and neutron exposure, commonly called a “trend curve.” To obtain this trend curve at all points in the pressure vessel wall requires that the selected trend curve be used together with the appropriate (r, θ, z) neutron field information derived by use of this guide to accomplish the necessary interpolations and extrapolations in space and time.4.2 Neutron Field Characterization—The tasks required to satisfy the second part of the objective of 4.1 are complex and are summarized in Practice E853. In doing this, it is necessary to describe the neutron field at selected (r, θ, z) points within the pressure vessel wall. The description can be either time dependent or time averaged over the reactor service period of interest. This description can best be obtained by combining neutron transport calculations with plant measurements such as reactor cavity (ex-vessel) and surveillance capsule or RPV cladding (in-vessel) measurements, benchmark irradiations of dosimeter sensor materials, and knowledge of the spatial core power distribution, including the time dependence. Because core power distributions change with time, reactor cavity or surveillance capsule measurements obtained early in plant life may not be representative of long-term reactor operation. Therefore, a simple normalization of neutron transport calculations to dosimetry data from a given capsule is unlikely to give a satisfactory solution to the problem over the full reactor lifetime. Guide E482 and Guide E944 provide detailed information related to the characterization of the neutron field for BWR and PWR power plants.4.3 Fracture Mechanics Analysis—Currently, operating limitations for normal heat up and cool down transients imposed on the reactor pressure vessel are based on the fracture mechanics techniques outlined in the ASME Boiler and Pressure Vessel Code. This code requires the assumption of the presence of a surface flaw of depth equal to one fourth of the pressure vessel thickness. In addition, the fracture mechanics analysis of accident-induced transients (Pressurized Thermal Shock, (PTS)) may involve evaluating the effect of flaws of varying depth within the vessel wall (4). Thus, information is required regarding the distribution of neutron exposure and the corresponding radiation damage within the pressure vessel, both in space and time (4). In this regard, Practice E185 provides guidelines for designing a minimum surveillance program, selecting materials, and evaluating metallurgical specimen test results for BWR and PWR power plants. Practice E2215 covers the evaluation of test specimens and dosimetry from LWR surveillance capsules.4.4 Neutron Spectral Effects and DPA—Analysis of the neutron fields of operating power reactors has shown that the neutron spectral shape changes with radial depth into the pressure vessel wall (2, 3). The ratio of dpa/ϕt (where ϕ is the fast (E > 1.0 MeV) neutron fluence rate and t is the time that the material was exposed to an average fluence rate) changes by factors of the order of 2.0/1.0 in traversing from the inner to the outer radius. Although dpa, since it includes a more detailed modeling of the displacement phenomenon, should theoretically provide a better correlation with property degradation than fluence (E > 1.0 MeV) (1, 19), this topic is still controversial and the available experimental data does not provide clear guidance (19, 20). Thus it is recommended to calculate and report both quantities; see Practice E853 and Practice E693.4.5 In-Vessel Surveillance Programs: 4.5.1 The neutron dosimetry monitors used in reactor vessel surveillance capsules provide measurements of the neutron fluence and fluence rate at single points on the core midplane within the reactor, and near the vessel wall; that is, at the surveillance capsule locations (1). In actual practice, the surveillance capsules may be located within the reactor at an azimuthal position that differs from that associated with the maximum neutron exposure (or that differs from the azimuthal and axial location of the assumed flaw); and at a radial position a few centimeters or more from the flaw and the pressure vessel wall (4, 5). Although the surveillance capsule dosimetry does provide points for normalization of the neutron physics transport calculations, it is still necessary to use analytical methods that provide an accurate representation of the spatial variation (axial, radial and azimuthal) of the neutron fluence (refer to Guide E482). It is also necessary to use other measurements to confirm the spatial distribution of RPV neutron exposure.4.5.2 Given that surveillance capsules are located radially closer to the core than the surface of the RPV, they may be shifted azimuthally away from the peak exposure location in order to limit the magnitude of the surveillance capsule lead factor. The lead factor is defined as the ratio of the fast neutron fluence at the center of the surveillance capsule to the peak fast neutron fluence at the clad–base metal interface of the RPV. One adverse effect of this azimuthal shift away from the peak is that the surveillance capsule dosimetry does not “see” the part of the core that produces the peak exposure of the reactor vessel. As a result, the surveillance capsule is unable to monitor the effect of changes in the core power distribution that are made to reduce the peak RPV neutron exposure. Another adverse effect is that with larger lead factors, the capsules are rapidly exposed to a high neutron fluence. For example, with a lead factor of five, a surveillance capsule will receive an exposure in as little as twelve years that is equivalent to what the reactor pressure vessel peak may see in 60 years of operation. Practices E185 and E2215 suggest not exceeding twice the maximum design fluence (MDF) or twice the end-of-license fluence (EOLF). In this example, this would require withdrawing any remaining surveillance capsules after 24 years of operation. Thus, without taking other steps, the reactor would be operated for the remaining 36 years (of a 60 year life) with no dosimetry present.4.5.3 New or replacement surveillance capsules should recognize and correct operating deficiencies by using improved capsule dosimetry. For example, for one class of PWR, the copper wire is cadmium shielded to minimize interference from trace amounts of cobalt. In about one third of the measurements the copper has become incorporated into the cadmium preventing separation and further processing. A simple solution to this problem is to use stainless steel hypodermic tubing to contain and separate the radiometric monitor wire inside the cadmium tubing. Example dimensions include: Typical radiometric monitor wire outside diameter = 0.020 in. (0.5 mm). Typical 19 gauge stainless steel tubing is 0.042 in. outside diameter by 0.027 in. inside diameter, 0.008 in. wall thickness. Typical cadmium tubing is 0.090 in. outside diameter by 0.050 in. inside diameter, 0.020 in. wall thickness.4.5.4 Guide E844 states that radionuclides with half-lives that are short compared to the irradiation duration should not be used. For one class of BWR reactor, the surveillance capsule dosimetry is minimal; consisting of an iron wire and a copper wire (sometimes also a nickel wire). This dosimetry is not suitable for longer irradiations as the “memory” of the activation products is too short to measure the accumulated fluence. For example, for the iron (n,p) activation product, 54Mn, the half-life is 312 d. For the copper (n,α) activation product, 60Co, the half-life is 5.27 a. After three half-lives the remaining activity is on the same order as the counting statistics. The result is that the iron wire has “forgotten” everything that has happened more than two cycles ago and the copper wire has forgotten everything that has happened more than eight cycles ago. This assumes 24-month-long fuel cycles. The copper (n,α) reaction is induced by high energy neutrons and that at a BWR surveillance capsule position only 1 % to 3 % of the fast (E > 1.0 MeV) neutrons are of high enough energy. This limits the value of the copper wire as a neutron fluence monitor. In order to monitor the neutron exposure of the RPV other dosimetry is needed. Installation of ex-vessel neutron dosimetry is the most reasonable and cost-effective option.4.5.5 The neutron fluence calculation on the RPV inner surface can be further verified by means of analyzing small samples of the irradiated stainless steel RPV cladding. Analyzing RPV cladding samples has been a well-established practice for over 30 years (21-36). During the reactor shut down periods, small samples (50 mg to 100 mg) can be machined from the RPV cladding. For retrospective dosimetry purposes the measured 54Mn, 58Co, and 93mNb activities are used. Because of its long half-life, 93mNb is especially useful for integrating fluence over time periods where accurate neutron transport calculations are not available. With sample locations properly selected, the fast neutron fluence distribution and its maximum on the RPV inner surface can be determined. By comparison of these data to the dosimetry data of the surveillance capsules, the lead factor at the time of measurement can also be obtained. This technique works best if the cladding material is one of the niobium-stabilized stainless steels. Type 347 with 0.7 % niobium is one example. Retrospective dosimetry has been successfully demonstrated for ordinary Type 304 stainless steel cladding with only a trace (~50 ppm) of niobium (35). It is important that the cladding surface is first polished to remove radioactive corrosion products before the sample is machined otherwise competing activity may compromise the sample. The tooling used to take these samples needs to be accurately located relative to reactor landmarks in order to know the actual axial and azimuthal locations of the samples. A reasonable accuracy target is ±25 mm axially and azimuthally. The effect of the sampling position error can be estimated by examining the spatial fast neutron fluence rate gradient in the vicinity of the sample point. In general, in the areas where the fast neutron fluence is the greatest, the gradient tends to be very small; approaching flat in the case of the axial distribution opposite the middle of the core. At extreme axial positions, well beyond the ends of the core, the gradient is steep. There the positioning error could lead to an estimated fluence error of ±20 %. A similar discussion applies to the azimuthal fluence rate gradients. The tooling also needs to be designed to completely retain all machined cladding chips and to prevent cross-contamination from one sample to another. Access to the full extent of azimuthal and axial clad samples is generally limited to PWRs due to the extensive structure (jet pumps, etc.) blocking general access to the RPV cladding of many BWRs. It may be possible to take a more limited set of samples from the cladding of a BWR RPV.4.5.6 The design and manufacture of new reactor pressure vessels should consider using one of the stainless steels or Inconel alloys that contains niobium for the purpose of cladding the inner surface of the vessel. This would result in a designed-in retrospective dosimetry system that would capture neutron exposure data from reactor startup.4.6 Ex-Vessel Surveillance Program: 4.6.1 Ex-vessel neutron dosimetry (EVND) has also been in wide scale application in nuclear reactors for over 30 years (28, 29, 31, 33, 35, 37-97). The main advantages of EVND are the relative simplicity and the relatively low cost of the dosimetry system. Removal and replacement of irradiated dosimetry takes little time. Typical installations have dosimetry that spans the active core height and continues to cover the extended beltline region of the RPV. Installation of dosimetry at multiple angles allows full octant coverage (for octant symmetric cores). Some EVND installations include multiple measurements at symmetric azimuthal angles to confirm symmetry in the azimuthal fluence rate distributions. Asymmetries may result from such things as non-symmetric core power distributions, differences in water temperatures from one loop to another, or ovality in the as-built dimensions for the reactor internals or RPV. Dosimetry capsules typically contain a full complement of radiometric monitors (refer to Guide E844) to ensure good spectral coverage and fluence integration. Typically, capsules are connected and supported by stainless steel wires or chains, which are, in turn, segmented and counted to provide axial gradient information.4.6.2 In order to minimize measurement field perturbation, the dosimeter capsules should be made of a neutron-transparent material such as aluminum. This also serves to reduce the radiation dose rates encountered when removing and replacing dosimetry. The gradient chains or wires should be a low mass per linear foot material, again to reduce the dose rates encountered during handling of irradiated dosimetry.4.6.3 An ex-vessel neutron dosimetry system needs to be accurately located with respect to well-known and easily verified reactor features. A reasonable accuracy target is ±25 mm axially and azimuthally. The effect of the dosimetry position error can be estimated by examining the spatial fast neutron fluence rate gradient in the vicinity of the measurement point. In general, in the areas where the fast neutron fluence is the greatest, the gradient tends to be very small; approaching flat in the case of the axial distribution opposite the middle of the core. At extreme axial positions, well beyond the ends of the core, the gradient is steep. There the positioning error could lead to an estimated fluence error of ±20 %. A similar discussion applies to the azimuthal fluence rate gradients.4.6.4 Ideally, the ex-vessel neutron dosimetry is installed before reactor startup so that it can provide data over the operating lifetime of the reactor. It is recommended that the ex-vessel neutron dosimetry be analyzed before and after significant plant modifications that would alter the neutron exposure of the reactor vessel. Some examples include switching from low-leakage core loading patterns back to out-in loading patterns (or vice versa), performing a significant (>10 %) uprating of the plant power, adding (or removing) core flux suppression absorbers or dummy fuel rods, or modifying the reactor internals geometry. The typical dosimetry replacement interval is between one and five 18-month-long fuel cycles (or equivalent intervals for other fuel cycle lengths).4.6.5 Periodic measurements (either RPV cladding samples or EVND) serve to confirm neutron fluence projections and help to avoid problems that result from errors in reactor-specific calculational models (98).4.6.6 Calculations of neutron fields in commercial reactors show that the neutron exposure (dpa) at the inner diameter of the pressure vessel can vary by a factor of three or more as a function of azimuthal position (2, 3). Dosimetry monitors in the reactor cavity outside the reactor pressure vessel are a useful tool, therefore, in determining the accuracy of the neutron field calculations at points inside the pressure vessel wall. Practice E853 recommends the use of ex-vessel reactor cavity neutron dosimetry measurements for verification of the physics transport calculations. The status of benchmark field and power reactor applications as well as studies of this approach are discussed in Refs. 1, 18, 19, 37-40, 99-112.1.1 This guide establishes the means and frequency of monitoring the neutron exposure of the LWR reactor pressure vessel throughout its operating life.1.2 The physics-dosimetry relationships determined from this guide may be used to estimate reactor pressure vessel damage through the application of Practice E693 and Guide E900, using fast neutron fluence (E > 1.0 MeV and E > 0.1 MeV), displacements per atom (dpa), or damage-function-correlated exposure parameters as independent exposure variables. Supporting the application of these standards are the E853, E944, E1005, and E1018 standards, identified in 2.1.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The SSTR method provides for the measurement of absolute-fission density per unit mass. Absolute-neutron fluence can then be inferred from these SSTR-based absolute fission rate observations if an appropriate neutron spectrum average fission cross section is known. This method is highly discriminatory against other components of the in-core radiation field. Gamma rays, beta rays, and other lightly ionizing particles do not produce observable tracks in appropriate LWR SSTR candidate materials. However, photofission can contribute to the observed fission track density and should therefore be accounted for when nonnegligible. For a more detailed discussion of photofission effects, see 14.4.4.2 In this test method, SSTRs are placed in surface contact with fissionable deposits and record neutron-induced fission fragments. By variation of the surface mass density (μg/cm 2) of the fissionable deposit as well as employing the allowable range of track densities (from roughly 1 event/cm2 up to 105 events/cm2 for manual scanning), a range of total fluence sensitivity covering at least 16 orders of magnitude is possible, from roughly 102 n/cm 2 up to 5 × 10 18 n/cm2. The allowable range of fission track densities is broader than the track density range for high accuracy manual scanning work with optical microscopy cited in 1.2. In particular, automated and semi-automated methods exist that broaden the customary track density range available with manual optical microscopy. In this broader track density region, effects of reduced counting statistics at very low track densities and track pile-up corrections at very high track densities can present inherent limitations for work of high accuracy. Automated scanning techniques are described in Section 11.4.3 For dosimetry applications, different energy regions of the neutron spectrum can be selectively emphasized by changing the nuclide used for the fission deposit.4.4 It is possible to use SSTRs directly for neutron dosimetry as described in 4.1 or to obtain a composite neutron detection efficiency by exposure in a benchmark neutron field. The fluence and spectrum-averaged cross section in this benchmark field must be known. Furthermore, application in other neutron fields may require adjustments due to spectral deviation from the benchmark field spectrum used for calibration. In any event, it must be stressed that the SSTR-fission density measurements can be carried out completely independent of any cross-section standards (6). Therefore, for certain applications, the independent nature of this test method should not be compromised. On the other hand, many practical applications exist wherein this factor is of no consequence so that benchmark field calibration would be entirely appropriate.1.1 This test method describes the use of solid-state track recorders (SSTRs) for neutron dosimetry in light-water reactor (LWR) applications. These applications extend from low neutron fluence to high neutron fluence, including high power pressure vessel surveillance and test reactor irradiations as well as low power benchmark field measurement. (1)2 Special attention is given to the use of state-of-the-art manual and automated track counting methods to attain high absolute accuracies. In-situ dosimetry in actual high fluence-high temperature LWR applications is emphasized.1.2 This test method includes SSTR analysis by both manual and automated methods. To attain a desired accuracy, the track scanning method selected places limits on the allowable track density. Typically, good results are obtained in the range of 5 to 800 000 tracks/cm2 and accurate results at higher track densities have been demonstrated for some cases. (2) Track density and other factors place limits on the applicability of the SSTR method at high fluences. Special care must be exerted when measuring neutron fluences (E>1MeV) above 1016 n/cm2 (3) .1.3 Low fluence and high fluence limitations exist. These limitations are discussed in detail in Sections 13 and 14 and in Refs (3-5).1.4 SSTR observations provide time-integrated reaction rates. Therefore, SSTRs are truly passive-fluence detectors. They provide permanent records of dosimetry experiments without the need for time-dependent corrections, such as decay factors that arise with radiometric monitors.1.5 Since SSTRs provide a spatial record of the time-integrated reaction rate at a microscopic level, they can be used for “fine-structure” measurements. For example, spatial distributions of isotopic fission rates can be obtained at very high resolution with SSTRs.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
CAN/CSA-C88.1-96 (R2005) Power Transformer and Reactor Bushings 现行 发布日期 :  1970-01-01 实施日期 : 

This PDF includes GI #2. 1. Scope 1.1 This Standard applies to outdoor bushings that have lightning impulse insulation levels 110-1950kV. They are for use as components of liquid-filled transformers and reactors on systems with a nominal voltage of

定价: 455元 / 折扣价: 387

在线阅读 收 藏

1.1 This specification covers seamless annealed or cold-worked, austenitic or martensitic stainless steel tubing of 0.100 to 1.0 in. [2.5 to 25 mm] outside diameter with wall thickness of 0.050 in. [1.3 mm] or less for use at high temperature in liquid metal-cooled reactor plants.1.2 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.3 This specification and the applicable material specifications are expressed in both inch-pound and SI units. However, unless the order specifies the applicable "M" specification designation (SI units), the material shall be furnished in inch-pound units.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Predictions of neutron radiation effects on pressure vessel steels are considered in the design of light-water moderated nuclear power reactors. Changes in system operating parameters often are made throughout the service life of the reactor vessel to account for radiation effects. Due to the variability in the behavior of reactor vessel steels, a surveillance program is warranted to monitor changes in the properties of actual vessel materials caused by long-term exposure to the neutron radiation and temperature environment of the reactor vessel. This practice describes the criteria that should be considered in planning and implementing surveillance test programs and points out precautions that should be taken to ensure that: (1) capsule exposures can be related to beltline exposures, (2) materials selected for the surveillance program are samples of those materials most likely to limit the operation of the reactor vessel, and (3) the test specimen types are appropriate for the evaluation of radiation effects on the reactor vessel.4.2 Guides E482 and E853 describe a methodology for estimation of neutron exposure obtained for reactor vessel surveillance programs. Regulators or other sources may describe different methods.4.3 The design of a surveillance program for a given reactor vessel must consider the existing body of data on similar materials in addition to the specific materials used for that reactor vessel. The amount of such data and the similarity of exposure conditions and material characteristics will determine their applicability for predicting radiation effects.1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. New advanced light-water small modular reactor designs with a nominal design output of 300 MWe or less have not been specifically considered in this practice. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials.1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) exceeds 1 × 1021 neutrons/m 2 (1 × 1017 n/cm2) at the inside surface of the ferritic steel reactor vessel.1.3 This practice does not provide specific procedures for monitoring the radiation induced changes in properties beyond the design life. Practice E2215 addresses changes to the withdrawal schedule during and beyond the design life.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.NOTE 1: The increased complexity of the requirements for a light-water moderated nuclear power reactor vessel surveillance program has necessitated the separation of the requirements into three related standards. Practice E185 describes the minimum requirements for design of a surveillance program. Practice E2215 describes the procedures for testing and evaluation of surveillance capsules removed from a reactor vessel. Guide E636 provides guidance for conducting additional mechanical tests. A summary of the many major revisions to Practice E185 since its original issuance is contained in Appendix X2.NOTE 2: This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. See Appendix X2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This practice covers analytical and analytical-experimental approaches that can be used to determine the variation in neutron exposure (fluence E > 1.0 MeV, dpa, etc.) and exposure rate and energy spectrum between surveillance locations and points in the pressure vessel wall. Procedures for reporting the results of these analyses with assigned uncertainties are also suggested. This practice deals with the physics-dosimetry aspects of surveillance programs and must be used in conjunction with other Matrix E 706 standards to provide extrapolations based on metallurgical damage correlations.1.2 The physics-dosimetry relationships determined from this practice may be used to estimate pressure vessel damage through application of Practice E 693 and Guide E 900 standards, using fluence (E > 1.0 MeV), dpa, or damage function derived exposure parameters as independent exposure variables. Supporting the application of these standards is E 944, E 1018, E 1005, and E 854 standards, identified in 2.1.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Each power reactor has a specific DEX value that is their technical requirement limit. These values may vary from about 200 to about 900 μCi/g based upon the height of their plant vent, the location of the site boundary, the calculated reactor coolant activity for a condition of 1 % fuel defects, and general atmospheric modeling that is ascribed to that particular plant site. Should the DEX measured activity exceed the technical requirement limit, the plant enters an LCO requiring action on plant operation by the operators.5.2 The determination of DEX is performed in a similar manner to that used in determining DEI, except that the calculation of DEX is based on the acute dose to the whole body and considers the noble gases 85mKr, 85Kr, 87Kr, 88Kr, 131mXe, 133mXe, 133Xe, 135mXe, 135Xe, and 138Xe which are significant in terms of contribution to whole body dose.5.3 It is important to note that only fission gases are included in this calculation, and only the ones noted in Table 1. For example 83mKr is not included even though its half-life is 1.86 hours. The reason for this is that this radionuclide cannot be easily determined by gamma spectrometry (low energy X-rays at 32 and 9 keV) and its dose consequence is vanishingly small compared to the other, more prevalent krypton radionuclides.5.4 Activity from 41Ar, 19F, 16N, and 11C, all of which predominantly will be in gaseous forms in the RCS, are not included in this calculation.5.5 If a specific noble-gas radionuclide is not detected, it should be assumed to be present at the minimum-detectable activity. The determination of dose-equivalent Xe-133 shall be performed using effective dose-conversion factors for air submersion listed in Table III.1 of EPA Federal Guidance Report No. 12,3 or the average gamma-disintegration energies as provided in ICRP Publication 38 (“Radionuclide Transformations”) or similar source.1.1 This practice applies to the calculation of the dose equivalent to 133Xe in the reactor coolant of nuclear power reactors resulting from the radioactivity of all noble gas fission products.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Radiometric monitors shall provide a proven passive dosimetry technique for the determination of neutron fluence rate (flux density), fluence, and spectrum in a diverse variety of neutron fields. These data are required to evaluate and estimate probable long-term radiation-induced damage to nuclear reactor structural materials such as the steel used in reactor pressure vessels and their support structures.5.2 A number of radiometric monitors, their corresponding neutron activation reactions, and radioactive reaction products and some of the pertinent nuclear parameters of these RMs and products are listed in Table 1. Table 2 provides data (37) on the cumulative and independent fission yields of the important fission monitors. Not included in these tables are contributions to the yields from photo-fission, which can be especially significant for non-fissile nuclides (2-5, 27-29, 38-41).(A) All yield data are given as a percentage with associated uncertainties given as percentages of the percentage at the 1σ level.(B) For this fission yield evaluation (37), “Fast” indicates that the data was extracted from a wide range of reactor-based fission neutron spectra that can be characterized as having an average energy of ~0.4 MeV. Almost all of the fission reactions for U-238 and Th-232 occur above an effective threshold energy of ~1 MeV and, for Np-237, above ~0.2 MeV.1.1 This test method describes procedures for measuring the specific activities of radioactive nuclides produced in radiometric monitors (RMs) by nuclear reactions induced during surveillance exposures for reactor vessels and support structures. More detailed procedures for individual RMs are provided in separate standards identified in 2.1 and in Refs (1-5).2 The measurement results can be used to define corresponding neutron induced reaction rates that can in turn be used to characterize the irradiation environment of the reactor vessel and support structure. The principal measurement technique is high resolution gamma-ray spectrometry, although X-ray photon spectrometry and Beta particle counting are used to a lesser degree for specific RMs (1-29).1.1.1 The measurement procedures include corrections for detector background radiation, random and true coincidence summing losses, differences in geometry between calibration source standards and the RMs, self absorption of radiation by the RM, other absorption effects, radioactive decay corrections, and burn out of the nuclide of interest (6-26).1.1.2 Specific activities are calculated by taking into account the time duration of the count, the elapsed time between start of count and the end of the irradiation, the half life, the mass of the target nuclide in the RM, and the branching intensities of the radiation of interest. Using the appropriate half life and known conditions of the irradiation, the specific activities may be converted into corresponding reaction rates (2-5, 28-30).1.1.3 Procedures for calculation of reaction rates from the radioactivity measurements and the irradiation power time history are included. A reaction rate can be converted to neutron fluence rate and fluence using the appropriate integral cross section and effective irradiation time values, and, with other reaction rates can be used to define the neutron spectrum through the use of suitable computer programs (2-5, 28-30).1.1.4 The use of benchmark neutron fields for calibration of RMs can reduce significantly or eliminate systematic errors since many parameters, and their respective uncertainties, required for calculation of absolute reaction rates are common to both the benchmark and test measurements and therefore are self canceling. The benchmark equivalent fluence rates, for the environment tested, can be calculated from a direct ratio of the measured saturated activities in the two environments and the certified benchmark fluence rate (2-5, 28-30).1.2 This test method is intended to be used in conjunction with ASTM Guide E844 and existing or proposed ASTM practices, guides, and test methods that are also directly involved in the physics-dosimetry evaluation of reactor vessel and support structure surveillance measurements.1.3 The procedures in this test method are applicable to the measurement of radioactivity in RMs that satisfy the specific constraints and conditions imposed for their analysis. More detailed procedures for individual RM monitors are identified in 2.1 and in Refs 1-5 (see Table 1).1.4 This test method, along with the individual RM monitor standard methods, are intended for use by knowledgeable persons who are intimately familiar with the procedures, equipment, and techniques necessary to achieve high precision and accuracy in radioactivity measurements.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard, except for the energy units based on the electron volt, keV and MeV, and the time units: minute (min), hour (h), day (d), and year (a).1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The HAFM test method is one of several available passive neutron dosimetry techniques (see, for example, Test Methods E854 and E1005). This test method can be used in combination with other dosimetry methods, or, if sufficient data are available from different HAFM sensor materials, as an alternative dosimetry test method. The HAFM method yields a direct measurement of total helium production in an irradiated sample. Absolute neutron fluence can then be inferred from this, assuming the appropriate spectrum integrated total helium production cross section. Alternatively, a calibration of the composite neutron detection efficiency for the HAFM method may be obtained by exposure in a benchmark neutron field where the fluence and spectrum averaged cross section are both known (see Guide E2005).5.2 HAFMs have the advantage of producing an end product, helium, which is stable, making the HAFM method very attractive for both short-term and long-term fluence measurements without requiring time-dependent corrections for decay. HAFMs are therefore ideal passive, time-integrating fluence monitors. Additionally, the burnout of the daughter product, helium, is negligible.5.2.1 Many of the HAFM materials can be irradiated in the form of unencapsulated wire segments (see 1.1.2). These segments can easily be fabricated by cutting from a standard inventoried material lot. The advantage is that encapsulation, with its associated costs, is not necessary. In several cases, unencapsulated wires such as Fe, Ni, Al/Co, and Cu, which are already included in the standard radiometric (RM) dosimetry sets (Table 1) can be used for both radiometric and helium accumulation dosimetry. After radiometric counting, the samples are later vaporized for helium measurement.(A) Evaluated 235U fission neutron spectrum averaged helium production cross section and energy range in which 90 % of the reactions occur. All values are obtained from ENDF/B-V Gas Production Dosimetry File data. Bracketed terms indicate cross section is for naturally occurring element.(B) Often included in dosimetry sets as a radiometric monitor, either as a pure element foil or wire or, in the case of aluminum, as an allaying material for other elements.5.3 The HAFM method is complementary to RM and solid state track recorder (SSTR) foils, and has been used as an integral part of the multiple foil method. The HAFM method follows essentially the same principle as the RM foil technique, which has been used successfully for accurate neutron dosimetry. Various HAFM sensor materials exist which have significantly different neutron energy sensitivities from each other. HAFMs containing 10B and 6Li have been used routinely in LMFBR applications in conjunction with RM foils. The resulting data are entirely compatible with existing adjustment methods for radiometric foil neutron dosimetry (refer to Guide E944 ).5.4 An application for the HAFM method lies in the direct analysis of pressure vessel wall scrapings or Charpy block surveillance samples. Measurements of the helium production in these materials can provide in situ integral information on the neutron fluence spectrum. This application can provide dosimetry information at critical positions where conventional dosimeter placement is difficult if not impossible. Analyses must first be conducted to determine the boron, lithium, and other component concentrations, and their homogeneities, so that their possible contributions to the total helium production can be determined. Boron (and lithium) can be determined by converting a fraction of the boron to helium with a known thermal neutron exposure. Measurements of the helium in the material before and after the exposure will enable a determination of the boron content (7). Boron level down to less than 1 wt. ppm can be obtained in this manner.5.5 By careful selection of the appropriate HAFM sensor material and its mass, helium concentrations ranging from ∼10−14 to 10−1 atom fraction can be generated and measured. In terms of fluence, this represents a range of roughly 1012 to 1027 n/cm2. Fluence (>1 MeV) values that may be encountered during routine surveillance testing are expected to range from ∼3 × 1014 to 2 × 10 20 n/cm2, which is well within the range of the HAFM technique.5.6 The analysis of HAFMs requires an absolute determination of the helium content. The analysis system specified in this test method incorporates a specialized mass spectrometer in conjunction with an accurately calibrated helium spiking system. Helium determination is by isotope dilution with subsequent isotope ratio measurement. The fact that the helium is stable makes the monitors permanent with the helium analysis able to be conducted at a later time, often without the inconvenience in handling caused by induced radioactivity. Such systems for analysis exist, and additional analysis facilities could be reproduced, should that be required. In this respect, therefore, the analytical requirements are similar to other ASTM test methods.1.1 This test method describes the concept and use of helium accumulation for neutron fluence dosimetry for reactor vessel surveillance. Although this test method is directed toward applications in vessel surveillance, the concepts and techniques are equally applicable to the general field of neutron dosimetry. The various applications of this test method for reactor vessel surveillance are as follows:1.1.1 Helium accumulation fluence monitor (HAFM) capsules,1.1.2 Unencapsulated, or cadmium or gadolinium covered, radiometric monitors (RM) and HAFM wires for helium analysis,1.1.3 Charpy test block samples for helium accumulation, and1.1.4 Reactor vessel (RV) wall samples for helium accumulation.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 The mechanical properties of steels and other metals are altered by exposure to neutron radiation. These property changes are assumed to be a function of chemical composition, metallurgical condition, temperature, fluence (perhaps also fluence rate), and neutron spectrum. The influence of these variables is not completely understood. The functional dependency between property changes and neutron radiation is summarized in the form of damage exposure parameters that are weighted integrals over the neutron fluence spectrum.3.2 The evaluation of neutron radiation effects on pressure vessel steels and the determination of safety limits requires the knowledge of uncertainties in the prediction of radiation exposure parameters (for example, dpa (Practice E693), neutron fluence greater than 1.0 MeV, neutron fluence greater than 0.1 MeV, thermal neutron fluence, etc.). This practice describes recommended procedures and data for determining these exposure parameters (and the associated uncertainties) for test reactor experiments.3.3 The nuclear industry draws much of its information from databases that come from test reactor experiments. Therefore, it is essential that reliable databases are obtained from test reactors to assess safety issues in Light Water Reactor (LWR) nuclear power plants.1.1 This practice covers the methodology summarized in Annex A1 to be used in the analysis and interpretation of physics-dosimetry results from test reactors.1.2 This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods.1.3 Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, exposure units, and neutron spectrum adjustment methods.1.4 This practice is directed towards the development and application of physics-dosimetry-metallurgical data obtained from test reactor irradiation experiments that are performed in support of the operation, licensing, and regulation of LWR nuclear power plants. It specifically addresses the physics-dosimetry aspects of the problem. Procedures related to the analysis, interpretation, and application of both test and power reactor physics-dosimetry-metallurgy results are addressed in Practices E185, E853, and E1035, Guides E900, E2005, E2006 and Test Method E646. See also E706.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Operation of commercial power reactors must conform to pressure-temperature limits during heatup and cooldown to prevent over-pressurization at temperatures that might cause non-ductile behavior in the presence of a flaw. Radiation damage to the reactor vessel is compensated for by adjusting the pressure-temperature limits to higher temperatures as the neutron damage accumulates. The present practice is to base that adjustment on the TTS produced by neutron irradiation as measured at the Charpy V-notch 41-J (30-ft·lbf) energy level. To establish pressure temperature operating limits during the operating life of the plant, a prediction of TTS must be made.4.1.1 In the absence of surveillance data for a given reactor material (see Practice E185 and E2215), the use of calculative procedures are necessary to make the prediction. Even when credible surveillance data are available, it will usually be necessary to interpolate or extrapolate the data to obtain a TTS for a specific time in the plant operating life. The embrittlement correlation presented herein has been developed for those purposes.4.2 Research has established that certain elements, notably copper (Cu), nickel (Ni), phosphorus (P), and manganese (Mn), cause a variation in radiation sensitivity of reactor pressure vessel steels. The importance of other elements, such as silicon (Si), and carbon (C), remains a subject of additional research. Copper, nickel, phosphorus, and manganese are the key chemistry parameters used in developing the calculative procedures described here.4.3 Only power reactor (PWR and BWR) surveillance data were used in the derivation of these procedures. The measure of fast neutron fluence used in the procedure is n/m2 (E > 1 MeV). Differences in fluence rate and neutron energy spectra experienced in power reactors and test reactors have not been accounted for in these procedures.1.1 This guide presents a method for predicting values of reference transition temperature shift (TTS) for irradiated pressure vessel materials. The method is based on the TTS exhibited by Charpy V-notch data at 41-J (30-ft·lbf) obtained from surveillance programs conducted in several countries for commercial pressurized (PWR) and boiling (BWR) light-water cooled (LWR) power reactors. An embrittlement correlation has been developed from a statistical analysis of the large surveillance database consisting of radiation-induced TTS and related information compiled and analyzed by Subcommittee E10.02. The details of the database and analysis are described in a separate report (ADJE090015-EA).2,3 This embrittlement correlation was developed using the variables copper, nickel, phosphorus, manganese, irradiation temperature, neutron fluence, and product form. Data ranges and conditions for these variables are listed in 1.1.1. Section 1.1.2 lists the materials included in the database and the domains of exposure variables that may influence TTS but are not used in the embrittlement correlation.1.1.1 The range of material and irradiation conditions in the database for variables used in the embrittlement correlation: 1.1.1.1 Copper content up to 0.4 %.1.1.1.2 Nickel content up to 1.7 %.1.1.1.3 Phosphorus content up to 0.03 %.1.1.1.4 Manganese content within the range from 0.55 to 2.0 %.1.1.1.5 Irradiation temperature within the range from 255 to 300°C (491 to 572°F).1.1.1.6 Neutron fluence within the range from 1 × 1021 n/m2 to 2 × 1024 n/m2 (E> 1 MeV).1.1.1.7 A categorical variable describing the product form (that is, weld, plate, forging).1.1.2 The range of material and irradiation conditions in the database for variables not included in the embrittlement correlation: 1.1.2.1 A533 Type B Class 1 and 2, A302 Grade B, A302 Grade B (modified), and A508 Class 2 and 3. Also, European and Japanese steel grades that are equivalent to these ASTM Grades.1.1.2.2 Submerged arc welds, shielded arc welds, and electroslag welds having compositions consistent with those of the welds used to join the base materials described in 1.1.2.1.1.1.2.3 Neutron fluence rate within the range from 3 × 1012 n/m2/s to 5 × 1016 n/m2/s (E > 1 MeV).1.1.2.4 Neutron energy spectra within the range expected at the reactor vessel region adjacent to the core of commercial PWRs and BWRs (greater than approximately 500MW electric).1.1.2.5 Irradiation exposure times of up to 25 years in boiling water reactors and 31 years in pressurized water reactors.1.2 It is the responsibility of the user to show that the conditions of interest in their application of this guide are addressed adequately by the technical information on which the guide is based. It should be noted that the conditions quantified by the database are not distributed evenly over the range of materials and irradiation conditions described in 1.1, and that some combination of variables, particularly at the extremes of the data range are under-represented. Particular attention is warranted when the guide is applied to conditions near the extremes of the data range used to develop the TTS equation and when the application involves a region of the data space where data is sparse. Although the embrittlement correlation developed for this guide was based on statistical analysis of a large database, prudence is required for applications that involve variable values beyond the ranges specified in 1.1. Due to strong correlations with other exposure variables within the database (that is, fluence), and due to the uneven distribution of data within the database (for example, the irradiation temperature and flux range of PWR and BWR data show almost no overlap) neither neutron fluence rate nor irradiation time sufficiently improved the accuracy of the predictions to merit their use in the embrittlement correlation in this guide. Future versions of this guide may incorporate the effect of neutron fluence rate or irradiation time, or both, on TTS , as such effects are described in (1).4 The irradiated material database, the technical basis for developing the embrittlement correlation, and issues involved in its application, are discussed in a separate report (ADJE090015-EA). That report describes the nine different TTS equations considered in the development of this guide, some of which were developed using more limited datasets (for example, national program data (2, 3)). If the material variables or exposure conditions of a particular application fall within the range of one of these alternate correlations, it may provide more suitable guidance.1.3 This guide is expected to be used in coordination with several standards addressing irradiation surveillance of light-water reactor vessel materials. Method of determining the applicable fluence for use in this guide are addressed in Guides E482, E944, and Test Method E1005. The overall application of these separate guides and practices is described in Practice E853.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard guide does not define how the TTS should be used to determine the final adjusted reference temperature, which would typically include consideration of the transition temperature before irradiation, the predicted TTS, and the uncertainties in the shift estimation method.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers seamless, annealed or cold worked, austenitic or martensitic stainless steel duct tubes of 2 to 7-in. [51 to 178 mm] outside dimensions with wall thickness of 0.250 in. [6.35 mm] or less for use at high temperature in liquid metal-cooled reactor plants.1.2 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.3 This specification and the applicable material specifications are expressed in both inch-pound and SI units. However, unless the order specifies the applicable "M" specification designation (SI units), the material shall be furnished in inch-pound units.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
42 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页