微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method allows for the measurement of the torque retention properties of container/continuous thread closure systems of various designs, materials, and manufacture, and is suitable for package development and engineering evaluation.5.2 Each test method can be used for the evaluation of non child resistant container/continuous thread closure systems under controlled conditions such as when the application torque is known and the applied downward force to the closure is zero or for Type I, style “A” push down and turn child resistant container/continuous thread closure systems under controlled conditions such as when the application torque and the applied downward force to the closure is known.5.3 This test method measures torque retention properties of container/continuous thread closure systems with the use of an automated transducer based torque meter operating at a known rotational velocity (rpm) or known torque ramp.5.4 This test method is intended for measurement of dry torque only.1.1 These test methods evaluate the torque retention of continuous thread closures on containers with matching finishes, for predetermined environmental conditions over time. Methods are defined for both Type I, style “A” push down and turn Type II2 child resistant and non child resistant type closures.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.NOTE 1: The SI unit system is the recommended system.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The CEDI devices can be used to produce deionized water from feeds of pretreated water. This test method permits the relatively rapid measurement of key performance capabilities of CEDI devices using standard sets of conditions. The data obtained can be analyzed to provide information on whether changes may have occurred in operating characteristics of the device independently of any variability in feed water characteristics or operating conditions. Under specific circumstances, this test method may also provide sufficient information for plant design.1.1 This test method covers the determination of the operating characteristics of continuous electrodeionization (CEDI) devices using synthetic feed solutions and is not necessarily applicable to natural waters. This test method is a procedure applicable to solutions with a conductivity range from approximately 50 μS/cm to 1000 μS/cm.1.2 This test method covers the determination of operating characteristics under standard test conditions of CEDI devices where the electrically active transfer media therein is predominantly unregenerated. This results in more rapid achievement of steady state and shorter test time than when performing a test which requires the active media be predominantly regenerated.1.3 This test method is not necessarily indicative of the following:1.3.1 Long-term performance on feed waters containing foulants or sparingly soluble solutes, or both,1.3.2 Performance on feeds of brackish water, sea water, or other high-salinity feeds,1.3.3 Performance on synthetic industrial feed solutions, pharmaceuticals, or process solutions of foods and beverages, or,1.3.4 Performance on feed waters less than 50 μS/cm, particularly performance relating to organic solutes, colloidal or particulate matter, or biological or microbial matter.1.4 This test method, subject to the limitations previously described, can be applied as either an aid to predict expected deionization performance for a given feed water quality, or as a test method to determine whether performance of a given device has changed over some period of time. It is ultimately, however, the user's responsibility to ensure the validity of this test method for their specific applications.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide describes the procedures for evaluating and calibrating friction measurement systems known as Continuous Friction Measuring Equipment (CFMEs) using the specialized equipment, instruments, pavement surfaces, trained personnel, and approved facilities. It serves as a process to identify and quantify the variables that affect system performance, to minimize the effect of these variables, and to provide a means to relate CFMEs to reference skid measurement systems. The standard covers the apparatus to be used in evaluation and calibration, physical measurements, static force evaluation and calibration, tire pressure gauge calibration, speed and distance calibration, slip ratio or yaw angle verification, water flow and distribution, force plate calibration, final testing and reporting, documentation, reporting of results, and frequency of system correlation and calibration.1.1 This guide describes the evaluation and calibration of friction measurement systems which are known as Continuous Friction Measuring Equipment (CFMEs). The evaluation and calibration processes, using the specialized equipment, instruments, pavement surfaces, trained personnel, and approved facilities, are performed using the procedures described below.1.2 This guide is offered as a process to identify and quantify the variables that affect system performance, to minimize the effect of these variables, and to provide a means to relate CFMEs to reference skid measurement systems.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide describes procedures that can be used to prepare new zinc-coated surfaces for painting and improve the bond of paint to the zinc surface.1.1 This guide covers surface cleaning and various methods for treating new, continuous zinc-coated (galvanized) steel surfaces produced by either the hot-dip method or by electroplating. This guide is applicable to only surface preparation for application of liquid paint and coating products, and not for powder coating applications. This guide covers surfaces that have not been treated previously at the mill to provide temporary protection against staining by moisture other than by easily removed protective oils (see Appendix X1). For preparing surfaces of new or weathered items of zinc-coated steel produced by batch processing, refer to Practice D6386.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Dissolved Ozone is useful in many industries for water sanitization, TOC reduction, food preservation, cleaning-in-place of food and beverage systems, and pyrogen destruction. It is often necessary to know how much ozone has entered the water, how much remains, and the degree to which it has been removed before process use.5.2 Some applications require that contact time, DO3 concentration integrated over time, be calculated, to assure disinfection.5.3 Continuous observation of trends in these measurements are needed for continuous quality monitoring and the measurement may be used for closed loop control of ozonation.5.4 In many pure water applications and especially where water quality is regulated by the FDA or similar enforcement agencies, ozone removal must be complete before the water is used. This test method is useful for detecting and determining dissolved ozone levels in water at the trace level as well as at process concentrations where sanitization and chemical reactions occur.1.1 This test method covers the on-line and in-line determination of dissolved ozone (DO3) in low conductivity water in the range from 0.001 mg/L to 5.0 mg/L DO3 and conductivity <100 μS/cm, typical of pharmaceutical and microelectronics pure waters. DO3 is detected by correlating the response of a membrane-covered electrochemical sensor to the dissolved ozone concentration.1.2 This test method provides a more convenient means for continuous measurement than the colorimetric methods typically used for grab sample measurements.1.3 This test method has the advantage of high sensitivity as well as durability in the process environment and has few interferences.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Introduction—Mu numbers (friction values) measured by CFME can be used as guidelines for evaluating the surface friction deterioration of runway pavements and for identifying appropriate corrective actions required for safe aircraft operations. The original levels were based on the work of the FAA/AS-90-1 (3). The report states that based on friction values from a Mu Meter Mark II using Dunlop tires, and tests conducted by NASA in the 1970s using a Boeing 727, Table 1 of Mu Meter friction level classifications for runway pavement surfaces was established for friction measurements at test speeds of 65 km/hr. Additionally, tests were conducted again with the Mu Meter Mark II outfitted with the Dico tire at 95 km/h. Then a second-order correlation was performed for the Mu Meter operating at 95 km/h and at 65 km/h resulting in the values shown in Table 2. These values were then fixed and used with correlations of other CFMEs to establish the present maintenance levels given in Table 3.2 of FAA Advisory Circular AC/150/5320-12. From the Wallops 1993 data, the IFI values were calculated and the 65 km/hr data in Table 2 was used to calculate the FM60 value for each level. The data for the two speeds for the four CFMEs in the FAA report (3) were used to establish the SMp values for each level. Then a new level, New Grooved, was added based on the differences of grooved and un-grooved sites at the NASA Wallops test facility. Table 3 is a list of these values to be the standard values FM60 and SMp for any future calibration of CFME. 5.2 Airports—Routine testing is carried out in order to obtain data for scheduling remedial work on the runway surface. A single run on either side of the centerline may be regarded as sufficient or a set of runs covering the whole width of the runway may be preferred. At 3 m spacing, the friction map which can be prepared from a set of runs of this kind provides excellent information on rubber buildup and surface polishing. Standard test speeds are typically 65 km/hr or 95 km/hr and standard test water film thickness is typically 1 mm. 1.1 This practice covers the method of calculating frictional values from correlations of continuous friction measurement equipment (CFME), using the Specification E1551 tire, for use in performing airport summer maintenance evaluations. 1.2 The practice is intended to provide a unified friction index of levels for use in harmonizing the output of devices. 1.3 Airport operators use a variety of CFMEs to assess the friction levels of their paved runway surfaces. The measurements are used to determine when the surfaces should be considered for or subjected to maintenance. However, many are built differently and produce different values when measuring the same pavement surfaces. This practice provides a method to harmonize these measurements so that the friction values generated can be used to determine the maintenance requirements as established by the operating authority. 1.4 The practice provides correlations for four maintenance levels of friction: New Design/Construction with grooves, New Design/Construction without grooves, Maintenance Planning, and Minimum Acceptable. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 ASTM International takes no position with respect to the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites generally are characterized by glass or fine grain-sized (<50 μm) ceramic matrices and ceramic fiber reinforcements. CFCCs are candidate materials for high-temperature structural applications requiring high degrees of corrosion and oxidation resistance, wear and erosion resistance, and inherent damage tolerance, that is, toughness. In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although shear test methods are used to evaluate shear interlaminar strength (τZX, τZY) in advanced ceramics, there is significant difficulty in test specimen machining and testing. Improperly prepared notches can produce nonuniform stress distribution in the shear test specimens and can lead to ambiguity of interpretation of strength results. In addition, these shear test specimens also rarely produce a gage section that is in a state of pure shear. Uniaxially forced transthickness tensile strength tests measure the tensile interlaminar strengthavoid the complications listed above, and provide information on mechanical behavior and strength for a uniformly stressed material. The ultimate strength value measured is not a direct measure of the matrix strength, but a combination of the strength of the matrix and the level of bonding between the fiber, fiber/matrix interphase, and the matrix.4.3 CFCCs tested in a transthickness tensile test (TTT) may fail from a single dominant flaw or from a cumulative damage process; therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially forced TTT may be a significant factor in determining the ultimate strength of CFCCs. The probabilistic nature of the strength distributions of the brittle matrices of CFCCs requires a sufficient number of test specimens at each testing condition for statistical analysis and design, with guidelines for test specimen size and sufficient numbers provided in this test method. Studies to determine the exact influence of test specimen volume on strength distributions for CFCCs have not been completed. It should be noted that strengths obtained using other recommended test specimens with different volumes and areas may vary due to these volume differences.4.4 The results of TTTs of test specimens fabricated to standardized dimensions from a particular material, or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire full-size end product or its in-service behavior in different environments.4.5 For quality control purposes, results derived from standardized TTT specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.6 The strength of CFCCs is dependent on their inherent resistance to fracture, the presence of flaws, damage accumulation processes, or a combination thereof. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is highly recommended.1.1 This test method covers the determination of transthickness tensile strengthunder monotonic uniaxial tensile loading of continuous fiber-reinforced ceramics (CFCC) at ambient temperature. This test method addresses, but is not restricted to, various suggested test specimen geometries, test fixtures, data collection, and reporting procedures. In general, round or square test specimens are tensile tested in the direction normal to the thickness by bonding appropriate hardware to the samples and performing the test. For a Cartesian coordinate system, the x-axis and the y-axis are in the plane of the test specimen. The transthickness direction is normal to the plane and is labeled the z-axis for this test method. For CFCCs, the plane of the test specimen normally contains the larger of the three dimensions and is parallel to the fiber layers for unidirectional, bidirectional, and woven composites. Note that transthickness tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial tensile loading, where “monotonic” refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method is intended primarily for use with all advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), woven, and tridirectional (3D). In addition, this test method also may be used with glass (amorphous) matrix composites with 1D, 2D, and 3D continuous fiber reinforcement. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites. It should be noted that 3D architectures with a high volume fraction of fibers in the “z” direction may be difficult to test successfully.1.3 Values are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Additional recommendations are provided in 6.7 and Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method provides an accurate and reliable method to measure the total calorific value of a fuel gas, on a continuous basis, which is used for regulatory compliance, custody transfer, and process control.1.1 This test method covers the determination with the continuous recording calorimeter (Note 1) of the total calorific (heating) value of fuel gas produced or sold in the natural gas range from 900 to 1200 Btu/standard ft3.NOTE 1: An extensive investigation of the accuracy of the Cutler-Hammer recording gas calorimeter, when used with gases of high heating value, was made by the National Bureau of Standards in 1957 under a research project sponsored by the American Gas Association.1.2 The subjects covered in this test method appear in the following sections:  SectionsAir-Gas Ratio Test 11Apparatus  5Basis of Measurement 14Cold Balance Test 10Compensation of Complicating Factors 13Condition of Gas Sample  7Definitions  2Installation of Apparatus  6Maintenance Appendix X1Operating Precautions Appendix X2Operation and Checking of Apparatus  9Precision 15  1  4Standardization of Calorimeter 12Standardization, Preliminary, of Calorimeter by Hydrogen  8Summary of Test Method  31.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is normally used to evaluate flat specimens from finished items of protective clothing and from materials that are candidates for items of protective clothing.5.1.1 Finished items of protective clothing include gloves, sleeves, aprons, suits, coveralls, hoods, boots, respirators, and the like.5.1.2 The phrase “specimens from finished items” encompasses seamed or other discontinuous regions as well as the usual continuous regions of protective clothing items.5.1.3 Selected seams for testing are representative of seams used in the principal construction of the protective clothing item and typically include seams of both the base material and where the base material is joined with other types of materials.5.2 The breakthrough detection time, standardized breakthrough time, permeation rate, and cumulative permeation are key measures of the effectiveness of a clothing material as a barrier to the test chemical. Such information is used in the comparison of clothing materials during the process of selecting clothing for protection from hazardous chemicals. Long breakthrough detection times, long standardized breakthrough detection times, low amounts of cumulative permeation, and low permeation rates are characteristics of more effective barrier materials than materials with higher permeation characteristics.NOTE 1: At present, only limited quantitative information exists about acceptable levels of dermal contact with most chemicals. Therefore, the data obtained using this test method cannot be used to infer safe exposure levels.5.2.1 The reporting of a standardized breakthrough time greater than a specific time period means that the test chemical has not permeated the specimen at a rate exceeding 0.1 μg/cm2/min in the designated time. Permeation may or may not have occurred at a lower rate during this time interval.5.2.2 The reporting of cumulative permeation over a specified test period is another means to report barrier performance of protective clothing for resistance to permeation. This measurement quantifies the total amount of chemical that passed through a known area of the material during the specified test period.NOTE 2: It is possible to relate cumulative permeation test results to the total amount of chemical to which an individual wearer may be exposed by accounting for the exposed surface area and the underlying air layer. This information has value when there are known maximum permitted skin exposure doses for specific chemicals.5.3 The sensitivity of the test method in detecting low permeation rates or amounts of the test chemical that permeate is determined by the combination of the analytical technique and collection system selected, and the ratio of material specimen area to collection medium volume or flow rate.5.3.1 The analytical technique employed shall be capable of measuring the concentration of the test chemical in the collection medium at or below 0.05 μg/cm2/min, and at or above the steady-state permeation rate.5.3.2 Often permeation tests will require measurement of the test chemical over several orders of magnitude in concentration, requiring adjustments in either the sample collection volume or concentration/dilution, or the analytical instrument settings over the course of the test.5.3.3 Higher ratios of material specimen area to collection medium volume or flow rate permit earlier detection of breakthrough and detection of lower permeation rates and levels of cumulative permeation because higher concentrations of the test chemical in the collection medium will develop in a given time period, relative to those that would occur at lower ratios.5.4 Comparison of results requires specific information on the test cell, procedures, and analytical techniques. Results obtained from closed-loop and open-loop testing may not be directly comparable.5.4.1 The sensitivity of an open-loop system is characterized by its minimum detectable permeation rate. A method for determining this value is presented in Appendix X1.5.4.2 The sensitivity of a closed-loop system is characterized by its minimum detectable mass permeated.5.5 A group of chemicals for use in permeation testing is given in Guide F1001.5.6 While this method specifies standardized breakthrough time as the time at which the permeation rate reaches 0.1 μg/cm2/min, it is acceptable to continue the testing and also report a normalized breakthrough time at a permeation rate of 1.0 µg/cm2/min.5.7 It is recommended that the test be continued for the measurement of maximum or steady-state permeation rate or for the duration specified for the determination of cumulative permeation.5.7.1 It is permitted to terminate tests early if there is catastrophic permeation of the chemical through the protective clothing material and the rate of permeation could overwhelm the capability of the selected analytical technique.5.8 Guide F1194 provides a recommended approach for reporting permeation test results.1.1 This test method measures the permeation of liquids and gases through protective clothing materials under the condition of continuous contact.1.2 This test method is designed for use when the test chemical is a gas or a liquid, where the liquid is either volatile (that is, having a vapor pressure greater than 1 mm Hg at 25 °C) or soluble in water or another liquid that does not interact with the clothing material.1.3 Values states in SI units are to be regarded as standard. Values given in parentheses are not exact equivalents and are given for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides information on the uniaxial tensile properties and tensile stress-strain response of a ceramic composite tube—tensile strength and strain, fracture strength and strain, proportional limit stress and strain, tensile elastic modulus, etc. The information may be used for material development, material comparison, quality assurance, characterization, and design data generation.5.2 Continuous fiber-reinforced ceramic composites (CFCCs) are composed of continuous ceramic-fiber directional (1D, 2D, and 3D) reinforcements in a fine-grain-sized (<50 µm) ceramic matrix with controlled porosity. Often these composites have an engineered thin (0.1 to 10 µm) interface coating on the fibers to produce crack deflection and fiber pull-out. These ceramic composites offer high-temperature stability, inherent damage tolerance, and high degrees of wear and corrosion resistance. As such, these ceramic composites are particularly suited for aerospace and high-temperature structural applications (1, 2).35.3 CFCC components have a distinctive and synergistic combination of material properties, interface coatings, porosity control, composite architecture (1D, 2D, and 3D), and geometric shape that are generally inseparable. Prediction of the mechanical performance of CFCC tubes (particularly with braid and 3D weave architectures) cannot be made by applying measured properties from flat CFCC plates to the design of tubes. Direct uniaxial tensile strength tests of CFCC tubes are needed to provide reliable information on the mechanical behavior and strength of tube geometries.5.4 CFCCs generally experience “graceful” fracture from a cumulative damage process, unlike monolithic advanced ceramics which fracture catastrophically from a single dominant flaw. The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, and any damage accumulation processes. These factors are affected by the composite material composition and variability in material and testing—components, reinforcement architecture and volume fraction, porosity content, matrix morphology, interface morphology, methods of material fabrication, test specimen preparation and conditioning, and surface condition.5.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments.5.6 For quality control purposes, results derived from standardized tubular tensile test specimens may be considered indicative of the response of the material from which they were taken, given primary processing conditions and post-processing heat treatments.1.1 This test method determines the axial tensile strength and stress-strain response of continuous fiber-reinforced advanced ceramic composite tubes at ambient temperature under monotonic loading. This test method is specific to tube geometries, because fiber architecture and specimen geometry factors are often distinctly different in composite tubes, as compared to flat plates.1.2 In the test method a composite tube/cylinder with a defined gage section and a known wall thickness is fitted/bonded into a loading fixture. The test specimen/fixture assembly is mounted in the testing machine and monotonically loaded in uniaxial tension at ambient temperature while recording the tensile force and the strain in the gage section. The axial tensile strength and the fracture strength are determined from the maximum applied force and the fracture force. The strains, the proportional limit stress, and the tensile modulus of elasticity are determined from the stress-strain data.1.3 This test method applies primarily to advanced ceramic matrix composite tubes with continuous fiber reinforcement: unidirectional (1D, filament wound and tape lay-up), bidirectional (2D, fabric/tape lay-up and weave), and tridirectional (3D, braid and weave). These types of ceramic matrix composites are composed of a wide range of ceramic fibers (oxide, graphite, carbide, nitride, and other compositions) in a wide range of crystalline and amorphous ceramic matrix compositions (oxide, carbide, nitride, carbon, graphite, and other compositions).1.4 This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.5 The test method describes a range of test specimen tube geometries based on past tensile testing of ceramic composite tubes. These geometries are applicable to tubes with outer diameters of 10 to 150 mm and wall thicknesses of 1 to 25 mm, where the ratio of the outer diameter-to-wall thickness (dO /t) is typically between 5 and 30.1.5.1 This test method is specific to ambient temperature testing. Elevated temperature testing requires high-temperature furnaces and heating devices with temperature control and measurement systems and temperature-capable grips and loading fixtures, which are not addressed in this test method.1.6 The test method addresses test equipment, gripping methods, testing modes, allowable bending stresses, interferences, tubular test specimen geometries, test specimen preparation, test procedures, data collection, calculation, reporting requirements, and precision/bias in the following sections.  Section 1Referenced Documents 2Terminology 3Summary of Test Method 4 5Interferences 6Apparatus 7Hazards 8Test Specimens 9Test Procedure 10Calculation of Results 11Report 12Precision and Bias 13Keywords 14Annexes  Interferences Annex A1Test Specimen Geometry Annex A2Grip Fixtures and Load Train Couplers Annex A3Allowable Bending and Load Train Alignment Annex A4Test Modes and Rates Annex A51.7 Units—The values stated in SI units are to be regarded as standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method is intended for the determination of the heat transfer performance value of a material, a combination of materials, or a comparison of different materials used in flame-resistant clothing for workers exposed to combined convective and radiant thermal hazards.5.2 This test method evaluates a material’s unsteady-state heat transfer properties when exposed to a continuous and constant heat source. Air movement at the face of the specimen and around the calorimeter can affect the measured heat transferred due to forced convective heat losses. Minimizing air movement around the specimen and test apparatus will aid in the repeatability of the results.5.3 This test method maintains the specimen in a static, horizontal position and does not involve movement except that resulting from the exposure.5.4 This test method specifies a standardized 84 ± 2 kW/m2 (2 ± 0.05 cal/cm2s) exposure condition. Different exposure conditions have the potential to produce different results. Use of other exposure conditions that are representative of the expected hazard are allowed but shall be reported with the results along with a determination of the exposure energy level stability.5.5 This test method does not predict skin burn injury from the heat exposure.NOTE 4: See Appendix X4 for additional information regarding this test method and predicted skin burn injury.1.1 This test method measures the non-steady state heat transfer through flame-resistant materials for clothing subjected to a continuous, combined convective and radiant heat exposure.1.1.1 This test method is not applicable to materials that are not flame resistant.NOTE 1: The determination of a material’s flame resistance shall be made prior to testing and done according to the applicable performance or specification standard, or both, for the material’s end-use.1.1.2 This test method does not predict a material’s skin burn injury performance from the specified thermal energy exposure. It does not account for the thermal energy contained in the test specimen after the exposure has ceased.NOTE 2: See Appendix X4 for additional information regarding this test method and predicted skin burn injury.1.2 This test method is used to measure and describe the response of materials, products, or assemblies to heat under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound or other units that are commonly used for thermal testing.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method utilizes large-scale testing equipment and procedures established at a variety of testing laboratories over the last 30 years.5.2 This method is useful in evaluating ECPs and their installation to reduce soil loss and sediment concentrations when exposed to defined rainfall conditions and improving water quality exiting the area disturbed by earthwork activity by reducing suspended solids and turbidity.5.3 This test method is a performance test, but can also be used for acceptance testing to determine product conformance to project specifications. For project-specific conformance, unique project-specific conditions should be considered. Caution is advised since information regarding laboratory specific precision is incomplete at this time, and differences in soil and other environmental and geotechnical conditions may affect ECP performance.5.4 This standard can also be used as a comparative tool for evaluating the erosion control characteristics of different ECPs and can also be used to gain agency approvals.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method is used to evaluate the ability of erosion control products (ECP) to protect slopes from rainfall-induced erosion using an adjustable tilting bed slope. The standard slopes range from 2.5:1 to 4:1 (H:V) having target rainfall intensities between 4.0 and 5.0 in./h [100 and 125 mm/h].1.2 There are three main elements the ECPs must have the ability to perform: 1. Absorb the impact force of raindrops, thereby reducing soil particle loosening and detachment through “splash” mechanisms; 2. Slow runoff and encourage infiltration, thereby reducing soil particle displacement and transport through “overland flow” mechanisms; and 3. Trap soil particles beneath the ECP. When comparing data from different ECPs under consideration, it is important to keep the test conditions the same for the ECPs being evaluated, for example, the rainfall intensity rate and the slope.1.3 The results of this test method can be used to evaluate performance and acceptability, and can be used to compare the effectiveness of different ECPs. This method provides a comparative evaluation of an ECP to baseline bare soil conditions under controlled and documented conditions. This test method can provide information about a product that is under consideration for a specific application where no performance information currently exists.1.4 This test method covers the use of three different soil types, ECP installation: sprayed, rolled, or dry applied, and a runoff collection procedure. This test is typically performed indoors, but may be performed outside as long as certain requirements are met. Partially enclosed facilities are acceptable providing the environmental conditions are met.1.5 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than inch-pound shall not be regarded as nonconformance with this standard.1.5.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In the system, the pound (lbf) represents a unit of force (weight), while the units for mass is slugs. The slug unit is not given, unless dynamic (F = ma) calculations are involved.1.5.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This practice implicitly combines two separate systems of units; the absolute and the gravitational systems. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit of mass. However, the use of balances and scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.5.3 Calculations are done using only one set of units; either gravitational inch-pound or SI. Other units are permissible provided appropriate conversion factors are used to maintain consistency of units throughout the calculations, and similar significant digits or resolution, or both are maintained.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.6.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method uses elevated temperature in an attempt to accelerate the degradation of a sealant and its adhesion to a substrate. This test method is an accelerated method and will only be a predictor of long-term durability if the actual service temperature is significantly lower than the elevated test temperature.5.2 This test method can be used as an indicator of longevity but direct correlation to actual use will be difficult for many applications.5.3 The correlation of data from this test method to applications where the sealant joint will have wet and dry cycles will be difficult since, with some sealants on some substrates, adhesion that is lost during wet periods is regained during dry periods.5.4 This test method is performed in a hot liquid and may be considered an acceleration of deterioration of the sealant or the sealant's adhesion to a substrate. Compared to how the sealant will be used in some applications, in some cases, this test may be less severe than the actual application. The benefit from the use of this test method will depend on the comparison of the conditions of this test to the actual conditions of use (temperature, duration, nature of substrate, composition of the liquid).5.5 To determine the ability of a sealant to perform in a given application; modification of this procedure will often be required and is permissible, as mutually agreed upon by interested parties.1.1 This test method covers a laboratory procedure that assists in determining the durability of a sealant and its adhesion to a substrate while continuously immersed in a liquid. This method tests the influence of a liquid on the sealant and its adhesion to a substrate. It does not test the added influence of constant stress from hydrostatic pressure that is often present with sealants used in submerged and below-grade applications, nor does it test the added influence of stress from joint movement while immersed. This method also does not (in its standard form) test the added influence of acids or caustics or other materials that may be in the liquid, in many applications.1.2 The values stated in SI units are to be regarded as the standard. The inch-pound given in parentheses are provided for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers requirements for steel reinforcing bars, with protective zinc or zinc-alloy coatings applied by the continuous hot-dip process. Continuous hot-dip galvanizing refers to the process of uninterrupted passage of long lengths of steel products through a molten bath of zinc or zinc-alloy. To control alloy formation and promote adhesion of the zinc or zinc-alloy coating with the steel base metal, the molten coating metal composition typically contains a percentage of aluminum ranging from 0.05 to 0.25. This aluminum is purposely supplied to the molten coating bath, either as a specified ingredient in the zinc spelter or by the addition of a master alloy containing aluminum.This specification prescribes ordering information (including specification for reinforcing bars to be coated, quantity of bars, and size and grade of bars) as well as requirements for steel reinforcing bars and coating bath metal; minimum average coating thickness grade and equivalent weight [mass]; finish and adherence of coating; inspection and certification; and permissible amount of damaged coating and repair of damaged coating.1.1 This specification covers steel reinforcing bars, with protective zinc or zinc-alloy coatings applied by the continuous hot-dip process.NOTE 1: The galvanizer is identified throughout this specification as the manufacturer.1.2 Guidelines for construction practices at the job-site are presented in Appendix X1.1.3 Guidelines for use of continuous hot-dip galvanized reinforcing bars with non-galvanized steel forms are presented in Appendix X2.1.4 The text of this specification references notes and footnotes which provide explanatory material. These notes and footnotes shall not be considered requirements of the specification.1.5 This specification is applicable for orders in either inch-pound units (as Specification A1094) or SI units (as Specification A1094M).1.6 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with this specification.1.7 This specification does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this specification to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Turbidity is undesirable in drinking water, plant effluent waters, water for food and beverage processing, and for a large number of other water dependent manufacturing processes. Removal of suspended matter is accomplished by coagulation, settling, and filtration. Measurement of turbidity provides a rapid means of process control to determine when, how, and to what extent the water must be treated to meet specifications.4.2 This test method is suitable for the on-line monitoring of turbidity such as that found in drinking water, process water, and high purity industrial waters.4.3 The instrumentation used must allow for the continuous on-line monitoring of a sample stream.4.4 When reporting the measured result, appropriate units should also be reported. The units are reflective of the technology used to generate the result, and if necessary, provide more adequate comparison to historical data sets.4.4.1 Table 1 describing technologies and reporting results. Those technologies listed are appropriate for the range of measurement prescribed in this test method are mentioned, though others may come available. Fig. X3.1 from Appendix X3 contains a flowchart to assist in technology selection.4.4.2 For a specific design that falls outside of these reporting ranges, the turbidity should be reported in TU with a subscripted wavelength value to characterize the light source that was used.4.4.3 Ratio white light turbidimeters are common as bench top instruments but not as a typical process instrument. However, if fitted with a flow-cell they meet the criteria of this test method.1.1 This test method covers the on-line and in-line determination of high-level turbidity in water that is greater than 1.0 turbidity units (TU) in municipal, industrial and environmental usage.1.2 In principle, there are three basic applications for on-line measurement set ups. This first is the slipstream (bypass) sample technique. For the slipstream sample technique a portion of sample is transported out of the process and through the measurement apparatus. It is then either transported back to the process or to waste. The second is the in-line measurement where the sensor is brought directly into the process (see Fig. 8). The third basic method is for in-situ monitoring of sample waters. This principle is based on the insertion of a sensor into the sample itself as the sample is being processed. The in-situ use in this test method is intended for the monitoring of water during any step within a processing train, including immediately before or after the process itself.1.3 This test method is applicable to the measurement of turbidities greater than 1.0 TU. The absolute range is dictated by the technology that is employed.1.4 The upper end of the measurement range is left undefined because different technologies described in this test method can cover very different ranges of turbidity.1.5 Many of the turbidity units and instrument designs covered in this test method are numerically equivalent in calibration when a common calibration standard is applied across those designs listed in Table 1. Measurement of a common calibration standard of a defined value will also produce equivalent results across these technologies. This test method prescribes the assignment of a determined turbidity values to the technology used to determine those values. Numerical equivalence to turbidity standards is observed between different technologies but is not expected across a common sample. Improved traceability beyond the scope of this test method may be practiced and would include the listing of the make and model number of the instrument used to determine the turbidity values.1.5.1 In this test method, calibration standards are often defined in NTU values, but the other assigned turbidity units, such as those in Table 1 are equivalent. For example, a 1 NTU formazin standard is also a 1 FNU, a 1 FAU, a 1 BU, and so forth.1.6 This test method does not purport to cover all available technologies for high-level turbidity measurement.1.7 This test method was tested on different waters, and with standards that will serve as surrogates to samples. It is the user’s responsibility to ensure the validity of this test method for waters of untested matrices.1.8 Those samples with the highest particle densities typically prove to be the most difficult to measure. In these cases, the process monitoring method can be considered with adequate measurement protocols installed.1.9 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to the MSDSs for all chemicals used in this procedure.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
67 条记录,每页 15 条,当前第 3 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页