微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Samples of liquefied petroleum gases are examined by various test methods to determine physical and chemical characteristics and conformance with specifications.5.2 Equipment described by this practice may be suitable for transportation of LPG samples, subject to applicable transportation regulations.1.1 This practice covers equipment and procedures for obtaining a representative sample of specification Liquefied Petroleum Gas (LPG), such as specified in Specification D1835, GPA 2140, and comparable international standards. This standard is applicable to flow-through cylinders with two valves and is not applicable to single valve cylinders or larger LPG sample containers such as those utilized for barbecue grills and/or forklift cylinders.1.2 This practice is suitable for obtaining representative samples for all routine tests for LP gases required by Specification D1835. In the event of a dispute involving sample integrity when sampling for testing against Specification D1835 requirements, Practice D3700 shall be used as the referee sampling procedure.1.3 This practice may also be used for other Natural Gas Liquid (NGL) products that are normally highly volatile, single phase materials (NGL mix, natural gasoline, field butane, etc.), defined in other industry specifications or contractual agreements, where use of open sample containers would risk the loss of volatile components. It is not intended for non-specification products that contain significant quantities of undissolved gases (N2, CO2), free water or other separated phases, such as raw or unprocessed gas/liquids mixtures and related materials. The same equipment can be used for these purposes, but additional precautions are generally needed to obtain representative samples of multiphase products (see Appendix X1 on Sampling Guidelines in Practice D3700).NOTE 1: Practice D3700 describes a recommended practice for obtaining a representative sample of a light hydrocarbon fluid and the subsequent preparation of that sample for laboratory analysis when dissolved gases are present. Use of Practice D1265 will result in a small but predictable low bias for dissolved gases due to the liquid venting procedure to establish the 20 % minimum ullage.1.4 This practice includes recommendations for the location of a sample point in a line or vessel. It is the responsibility of the user to ensure that the sampling point is located so as to obtain a representative sample.1.5 The values stated in SI units are to be regarded as standard.1.5.1 Exception—Non-SI units are shown in parentheses for information only.1.6  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

5.1 Information on the vapor pressures of liquefied petroleum gas products under temperature conditions from 37.8 °C to 70 °C (100 °F to 158 °F) is pertinent to selection of properly designed storage vessels, shipping containers, and customer utilization equipment to ensure safe handling of these products.5.2 Determination of the vapor pressure of liquefied petroleum gas is important for safety reasons to ensure that the maximum operating design pressures of storage, handling, and fuel systems will not be exceeded under normal operating temperature conditions.5.3 For liquefied petroleum gases, vapor pressure can be considered a semi-quantitative measure of the amount of the most volatile material present in the product, and this can give an indication of low temperature operability.1.1 This test method covers the determination of the gauge vapor pressures of liquefied petroleum gas products at temperatures of 37.8 °C (100 °F) up to and including a test temperature of 70 °C (158 °F). (Warning—Extremely flammable gas. May be harmful when inhaled.)NOTE 1: An alternative method for measurement of vapor pressure of liquefied petroleum gases is Test Method D6897.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 1.1 and Annex A2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

5.1 High water concentrations can have a detrimental effect on the many uses of liquefied petroleum gas (LPG). Wet butane, propane, and other low molecular weight hydrocarbon products can cause operational issues in customer equipment and downstream processes. Water can cause corrosion problems and create safety hazards during the storage, distribution and use of liquefied petroleum gas (LPG) and pressurized low molecular weight hydrocarbon samples.5.2 While the dryness of propane may be monitored with a “functional” test such as the valve freeze Test Method D2713, this test method provides an analytical method to directly measure water content in LPG and pressurized low molecular weight hydrocarbons and their mixtures.1.1 This test method describes the use of a specialized liquefied gas sampler coupled to a coulometric Karl Fischer (KF) titrator for the determination of water in liquid butane with water concentrations from 1 mg/kg to 100 mg/kg.NOTE 1: Other liquefied petroleum gases described in Specification D1835 including propane, propene (propylene), butylenes and mixtures of these materials and other light hydrocarbons, and dimethyl ether described in Specification D7901, can be analyzed by this method but the precision has not been studied and therefore the stated precision has not been validated for these materials.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 10 for specific warning statements.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Information on the vapor pressures of liquefied petroleum gas is pertinent to selection of properly designed storage vessels, shipping containers, and customer utilization equipment to ensure safe handling of these products.5.2 Determination of the vapor pressure of liquefied petroleum gas is important for safety reasons to ensure that the maximum operating design pressures of storage, handling, and fuel systems will not be exceeded under normal operating temperature conditions.5.3 For liquefied petroleum gases, vapor pressure can be considered a semi-quantitative measure of the amount of the most volatile material present in the product.5.4 This test method uses a small sample volume and excludes any manual handling of a measuring chamber under high pressure.1.1 This test method covers the use of automatic vapor pressure instruments to determine the vapor pressure of liquefied petroleum gas products at a temperature of 37.8 °C, vapor to liquid ratio of 0.5:1, and pressures from 200 kPa to 1550 kPa on a sample volume of 3.33 mL.1.2 This test method is applicable to the determination of vapor pressures of liquefied petroleum gas products at temperatures from 37.8 °C to 70 °C, vapor to liquid ratios of 0.1:1 to 4:1, and pressures up to 3500 kPa; however, the precision of the test method (see Section 15) has only been determined for a vapor to liquid ratio of 0.5:1, at a temperature of 37.8 °C, and a pressure range from 300 kPa to 1500 kPa.NOTE 1: This test method is not intended to determine the true vapor pressure of LPG samples, but rather determine and report the vapor pressure of LPG at the 37.8 °C temperature and 0.5:1 vapor to liquid ratio as the Test Method D1267 method.NOTE 2: This test method is not a true vapor pressure method and will not measure the full contribution from any dissolved gases such as nitrogen or helium if they are present. The contribution of light gases to the measured vapor pressure is highly dependent on the test temperature, type of gas, and V/L ratio of the test.1.3 The values stated in SI units are to be regarded as standard.1.3.1 Exception—Non-SI units are included in parentheses for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Appendix X2.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D1835-22 Standard Specification for Liquefied Petroleum (LP) Gases Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers liquefied petroleum gases consisting of propane, propene (propylene), butane, and mixtures of these materials. The products are intended for use as domestic, commercial and industrial heating, and engine fuels. Care must be taken to in sampling of the liquefied gases for test results to be significant. All four types of liquefied petroleum gases covered by this specification should conform to the specified requirements for vapor pressure, volatile residue, residue matter, relative density, and corrosion.1.1 This specification covers those products commonly referred to as liquefied petroleum gases, consisting of propane, propene (propylene), butane, and mixtures of these materials. Four basic types of liquefied petroleum gases are provided to cover the common use applications.1.2 This specification is applicable to products intended for use as domestic, commercial and industrial heating, and engine fuels.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3.1 The non-SI unit ‘psig’ is the standard unit for footnote C of Table 1 because that unit of measurement is widely used in North American industry.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D1837-17 Standard Test Method for Volatility of Liquefied Petroleum (LP) Gases (Withdrawn 2017) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

4.1 Volatility, expressed in terms of the 95 % evaporated temperature of the product, is a measure of the amount of least volatile components present in the product. Coupled with a vapor pressure limit, it serves to ensure essentially single-component products in the cases of commercial grades of propane and butane. When volatility is coupled with a vapor pressure limit which has been related to density, as in the case of the commercial PB-mixture, the combination serves to assure essentially two component mixtures for such fuels. When coupled with a proper vapor pressure limit, this measurement serves to assure that special-duty propane products will be composed chiefly of propane and propylene and that propane will be the major constituent.1.1 This test method is a measure of the relative purity of the various types of liquefied petroleum (LP) gases and helps to ensure suitable volatility performance. The test results, when properly related to vapor pressure and density of the product, can be used to indicate the presence of butane and heavier components in propane-type LP-gas, and pentane and heavier components in propane-butane and butane-type fuels. The presence of hydrocarbon compounds less volatile than those of which the LP-gas is primarily composed is indicated by an increase in the 95 % evaporated temperature.1.2 When the type and concentration of higher boiling components is required, chromatographic analysis should be used.1.3 The values stated in SI units are to be regarded as the standard.1.3.1 Exception—The non-SI values are provided for information only.1.4 WARNING—Mercury has been designated by many regulatory agencies as a hazardous material that can cause central nervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Safety Data Sheet (SDS) for details and EPA’s website—http://www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.1.4.1 Note that thallium in a mercury-thallium thermometer is also a hazardous material.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers LNG density calculation models for use in the calculation or prediction of the densities of saturated liquefied natural gas (LNG) mixtures at a specified temperature range given the pressure, temperature, and composition of the mixture. Composition restrictions for the LNGs are given for methane, nitrogen, n-butane, i-butane, and pentanes. It is assumed that hydrocarbons with carbon numbers of six or greater are not present in the LNG solution. The mathematical models presented here are the extended corresponding states model, hard sphere model, revised Klosek and McKinley model, and the cell model.1.1 This specification covers Liquefied Natural Gas (LNG) density calculation models for use in the calculation or prediction of the densities of saturated LNG mixtures from 90K to 120K to within 0.1 % of true values given the pressure, temperature, and composition of the mixture.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Copper corrosion limits provide assurance that difficulties will not be experienced in deterioration of the copper and copper-alloy fittings and connections that are commonly used in many types of utilization, storage, and transportation equipment.1.1 This test method covers the detection of the presence of components in liquefied petroleum gases which can be corrosive to copper.NOTE 1: For an equivalent copper strip test applicable to less volatile petroleum products, see Test Method D130.1.2 The values stated in SI units are to be regarded as standard.1.2.1 Exception—The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.1, 10.3.1, and Annex A1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides guidance on the minimum requirements for the design, manufacture, installation, and operation of bunker hose transfer assemblies for cryogenic service pertaining to bunkering of LNG-fueled vessels. The bunker hose transfer assemblies addressed by this practice are for connections between the LNG-fueled vessel bunker manifold presentation flange connections and the LNG supplier bunkering manifold presentation flange connections.1.1 This practice covers the minimum requirements for the design, manufacturing, and deployment of bunker hose transfer assemblies for cryogenic service pertaining to bunkering of liquefied natural gas (LNG)-fueled vessels. The bunker hose transfer assemblies addressed by this practice are for connections between the LNG-fueled vessel bunker manifold presentation flange connections and the LNG supplier bunkering manifold presentation flange connections.1.2 Transfer assemblies are suitable for use in multiple maritime bunkering applications, including but not limited to facilities, vessels, trucks, and other LNG bunkering supply services. This practice will directly address the hose assembly, dry quick disconnect couplings (DQD), breakaway couplings, gaskets, insulating flange, strainers, and associated fittings.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Control over the residue content as specified in Specification D1835 is of considerable importance in end-use applications of LPG. Oily residue in LPG is contamination which can occur during production, transportation, or storage.5.2 This test method is quicker and much more sensitive than manual methods, such as Test Method D2158, which is based on evaporation of large sample volumes followed by visual or gravimetric estimation of residue content.5.3 This test method provides enhanced sensitivity in measurements of heavier (oily) residues, with a quantification limit of 10 mg/kg total residue.5.4 This test method gives both quantitative results and information about contaminant composition such as boiling point range and fingerprint, which can be very useful in tracing the source of a particular contaminant.1.1 This test method covers the determination, by gas chromatography, of soluble hydrocarbon materials, sometimes called “oily residue,” which can be present in liquefied petroleum (LP) gases and which are substantially less volatile than the LPG product.1.2 This test method quantifies, in the range of 10 mg/kg to 600 mg/kg (ppm mass), the residue with a boiling point between 174 °C and 522 °C (C10 to C40) in LPG. Higher boiling materials, or materials that adhere permanently to the chromatographic column, will not be detected.1.3 Appendix X3, Appendix X4, and Appendix X6 describe additional applications which could be performed based on the hardware and procedures described in this test method. Appendix X3 describes a test procedure for expanding the analysis range to benzene, Appendix X4 describes a test procedure for the analysis of diisopropanolamine, and Appendix X6 describes a test procedure for the analysis of heavy residues or contaminants from C40 to about C60 in LPG.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏
33 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页