微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This guide establishes procedures to help parties involved in unit price piping insulation contracts reach agreement as to what components will be counted for pricing purposes.1.1 This guide defines the components of an insulated piping system to be measured or counted to determine quantities and pricing for unit price contracts or extra work.1.2 Pricing may be done through unit pricing for each item by pipe size, type of insulation system, insulation thickness, double or multilayer insulation, type of weatherproofing or jacketing, and pressure rating (if necessary) or through component (fitting) factor or multipliers.1.2.1 Component (fitting) factors or multipliers, which are multipliers times the straight length of piping as shown in Table 1, determine relative prices for each component not within the scope of this guide. These factors or multipliers are to be determined by the insulating contractor relative to the given situation and insulation system specification.1.2.2 It is suggested that only one type of pricing be used on a project.1.2.3 The values stated in inch-pound units are to be regarded as the standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Significance of Thermal Resistance Measurements—Knowledge of the thermal resistance of new buildings is important to determine whether the quality of construction satisfies criteria set by the designer, by the owner, or by a regulatory agency. Differences in quality of materials or workmanship may cause building components not to achieve design performance.5.1.1 For Existing Buildings—Knowledge of thermal resistance is important to the owners of older buildings to determine whether the buildings should receive insulation or other energy-conserving improvements. Inadequate knowledge of the thermal properties of materials or heat flow paths within the construction or degradation of materials may cause inaccurate assumptions in calculations that use published data.5.2 Advantage of In-Situ Data—This practice provides information about thermal performance that is based on measured data. This may determine the quality of new construction for acceptance by the owner or occupant or it may provide justification for an energy conservation investment that could not be made based on calculations using published design data.5.3 Heat Flow Paths—This practice assumes that net heat flow is perpendicular to the surface of the building envelope component within a given subsection. Knowledge of surface temperature in the area subject to measurement is required for placing sensors appropriately. Appropriate use of infrared thermography is often used to obtain such information. Thermography reveals nonuniform surface temperatures caused by structural members, convection currents, air leakage, and moisture in insulation. Practices C1060 and C1153 detail the appropriate use of infrared thermography. Note that thermography as a basis for extrapolating the results obtained at a measurement site to other similar parts of the same building is beyond the scope of this practice.5.4 User Knowledge Required—This practice requires that the user have knowledge that the data employed represent an adequate sample of locations to describe the thermal performance of the construction. Sources for this knowledge include the referenced literature in Practice C1046 and related works listed in Appendix X2. The accuracy of the calculation is strongly dependent on the history of the temperature differences across the envelope component. The sensing and data collection apparatuses shall have been used properly. Factors such as convection and moisture migration affect interpretation of the field data.5.5 Indoor-Outdoor Temperature Difference—The speed of convergence of the summation technique described in this practice improves with the size of the average indoor-outdoor temperature difference across the building envelope. The sum of least squares technique is insensitive to indoor-outdoor temperature difference, to small and drifting temperature differences, and to small accumulated heat fluxes.5.6 Time-Varying Thermal Conditions—The field data represent varying thermal conditions. Therefore, obtain time-series data at least five times more frequently than the most frequent cyclical heat input, such as a furnace cycle. Obtain the data for a long enough period such that two sets of data that end a user-chosen time period apart do not cause the calculation of thermal resistance to be different by more than 10 %, as discussed in 6.4.5.6.1 Gather the data over an adequate range of thermal conditions to represent the thermal resistance under the conditions to be characterized.NOTE 2: The construction of some building components includes materials whose thermal performance is dependent on the direction of heat flow, for example, switching modes between convection and stable stratification in horizontal air spaces.5.7 Lateral Heat Flow—Avoid areas with significant lateral heat flow. Report the location of each source of temperature and heat flux data. Identify possible sources of lateral heat flow, including a highly conductive surface, thermal bridges beneath the surface, convection cells, etc., that may violate the assumption of heat flow perpendicular to the building envelope component.NOTE 3: Appropriate choice of heat flow sensors and placement of those sensors can sometimes provide meaningful results in the presence of lateral heat flow in building components. Metal surfaces and certain concrete or masonry components may create severe difficulties for measurement due to lateral heat flow.5.8 Light- to Medium-Weight Construction—This practice is limited to light- to medium-weight construction that has an indoor temperature that varies by less than 3 K. The heaviest construction to which this practice applies would weigh 440 kg/m2, assuming that the massive elements in building construction all have a specific heat of about 0.9 kJ/kg K. Examples of the heaviest construction include: (1) a 390-kg/m2 wall with a brick veneer, a layer of insulation, and concrete blocks on the inside layer or (2) a 76-mm concrete slab with insulated built-up roofing of 240 kg/m2. Insufficient knowledge and experience exists to extend the practice to heavier construction.5.9 Heat Flow Modes—The mode of heat flow is a significant factor determining R-value in construction that contains air spaces. In horizontal construction, air stratifies or convects, depending on whether heat flow is downwards or upwards. In vertical construction, such as walls with cavities, convection cells affect determination of R-value significantly. In these configurations, apparent R-value is a function of mean temperature, temperature difference, and location along the height of the convection cell. Measurements on a construction whose performance is changing with conditions is beyond the scope of this practice.1.1 This practice covers how to obtain and use data from in-situ measurement of temperatures and heat fluxes on building envelopes to compute thermal resistance. Thermal resistance is defined in Terminology C168 in terms of steady-state conditions only. This practice provides an estimate of that value for the range of temperatures encountered during the measurement of temperatures and heat flux.1.2 This practice presents two specific techniques, the summation technique and the sum of least squares technique, and permits the use of other techniques that have been properly validated. This practice provides a means for estimating the mean temperature of the building component for estimating the dependence of measured R-value on temperature for the summation technique. The sum of least squares technique produces a calculation of thermal resistance which is a function of mean temperature.1.3 Each thermal resistance calculation applies to a subsection of the building envelope component that was instrumented. Each calculation applies to temperature conditions similar to those of the measurement. The calculation of thermal resistance from in-situ data represents in-service conditions. However, field measurements of temperature and heat flux may not achieve the accuracy obtainable in laboratory apparatuses.1.4 This practice permits calculation of thermal resistance on portions of a building envelope that have been properly instrumented with temperature and heat flux sensing instruments. The size of sensors and construction of the building component determine how many sensors shall be used and where they should be placed. Because of the variety of possible construction types, sensor placement and subsequent data analysis require the demonstrated good judgement of the user.1.5 Each calculation pertains only to a defined subsection of the building envelope. Combining results from different subsections to characterize overall thermal resistance is beyond the scope of this practice.1.6 This practice sets criteria for the data-collection techniques necessary for the calculation of thermal properties (see Note 1). Any valid technique may provide the data for this practice, but the results of this practice shall not be considered to be from an ASTM standard, unless the instrumentation technique itself is an ASTM standard.NOTE 1: Currently only Practice C1046 can provide the data for this practice. It also offers guidance on how to place sensors in a manner representative of more than just the instrumented portions of the building components.1.7 This practice pertains to light-through medium-weight construction as defined by example in 5.8. The calculations apply to the range of indoor and outdoor temperatures observed.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This practice covers recommendations on permanent marking of metallic and nonmetallic orthopaedic implant components. The practical amounts of information that should be included in the marking are specified. Where implant size and shape allow, it is recommended that the following standard information be included in the permanent marking: (1) manufacturer, (2) material, (3) implant component catalog number or model number, and (4) implant component serial number or lot number. For smaller implants, it is recommended that the following minimum information be included in the permanent marking: symbols or letters selected by the manufacturer which identify (1) the manufacturer and (2) the material from which the component is made. The system of symbols or letters shall be described in the manufacturer’s product literature. Optional information may be included in the permanent marking, such as implant size and whether an implant is intended for right limb or left limb reconstruction.1.1 It is common practice for orthopaedic implant manufacturers to apply permanent identification to implant components. In this regard, Practice F86 describes recommended locations and methods of marking for metallic implants.1.2 The purpose of this practice is to (1) recommend that orthopaedic implants be permanently marked, and (2) recommend practical amounts of information that should be included in the marking. It is recognized, however, that marking is not practical in some cases (see 4.1).1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is used to determine the time to sustained flaming and heat release of materials and composites exposed to a prescribed initial test heat flux in the cone calorimeter apparatus.5.2 Quantitative heat release measurements provide information that can be used for upholstery and mattress product designs and product development.5.3 Heat release measurements provide useful information for product development by yielding a quantitative measure of specific changes in fire performance caused by component and composite modifications. Heat release data from this test method will not be predictive of product behavior if the product does not spread flame over its surface under the fire exposure conditions of interest.5.4 Test Limitations—The test data are invalid if either of the following conditions occur: (1) explosive spalling; or (2) the specimen swells sufficiently prior to ignition to touch the spark plug, or the specimen swells up to the plane of the heater base during combustion.1.1 This fire-test-response test method can be used to determine the ignitability and heat release from the composites of contract, institutional, or high-risk occupancy upholstered furniture or mattresses using a bench scale oxygen consumption calorimeter.1.2 This test method provides for measurement of the time to sustained flaming, heat release rate, peak and total heat release, and effective heat of combustion at a constant initial test heat flux of 35 kW/m2. This test method is also suitable to obtain heat release data at different heat fluxes. The specimen is oriented horizontally, and a spark ignition source is used.1.3 The times to sustained flaming, heat release, and effective heat of combustion are determined using the apparatus and procedures described in Test Method E1354.1.4 The tests are performed on bench-scale specimens combining the furniture or mattress outer layer components. Frame elements are not included.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.8 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 This test method defines a procedure for testing components being considered for installation into a high-purity gas distribution system. Application of this test method is expected to yield comparable data among components tested for purposes of qualification for this installation.1.1 This test method covers a procedure for testing components for oxygen contribution to ultra-high purity gas distribution systems at ambient temperature. In addition, this test method allows testing of the component at elevated ambient temperatures as high as 70°C.1.2 This test method applies to in-line components containing electronics grade materials such as those used in a semiconductor gas distribution system.1.3 Limitations: 1.3.1 This test method is limited by the sensitivity of current instrumentation, as well as the response time of the instrumentation. This test method is not intended to be used for test components larger than 12.7-mm (1/2-in.) outside diameter nominal size. This test method could be applied to larger components; however, the stated volumetric flow rate may not provide adequate mixing to ensure a representative sample. Higher flow rates may improve the mixing but excessively dilute the sample.1.3.2 This test method is written with the assumption that the operator understands the use of the apparatus at a level equivalent to six months of experience.1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 5.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 The purpose of this test method is to define a procedure for testing components being considered for installation into a high-purity gas distribution system. Application of this test method is expected to yield comparable data among components tested for the purposes of qualification for this installation.1.1 This test method covers testing components for total moisture contribution to a gas distribution system at ambient temperature. In addition, the test method allows testing at elevated ambient temperatures as high as 70°C and of the component moisture capacity and recovery.1.2 This test method applies to in-line components containing electronics grade materials such as those used in semiconductor gas distribution systems.1.3 Limitations: 1.3.1 This test method is limited by the sensitivity of current instrumentation, as well as by the response time of the instrumentation. This test method is not intended to be used for test components larger than 12.7-mm (1/2-in.) outside diameter nominal size. This test method could be applied to larger components; however, the stated volumetric flow rate may not provide adequate mixing to ensure a representative sample. Higher flow rates may improve the mixing but excessively dilute the sample.1.3.2 This test method is written with the assumption that the operator understands the use of the apparatus at a level equivalent to six months of experience.1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 5.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers hot-wrought and cold-finished special quality carbon steel bars, in straight lengths only, subject to mechanical property requirements and intended for use in manufacturing components for pressure piping and other pressure-containing applications. The steel bars are furnished in Grade B and Grade C and shall be made by melting, deoxidation, hot and cold working, heat treatment, and shall have special quality. Heat and product analyses shall be performed on the material and the chemical composition shall conform to the values required in carbon, manganese, phosphorus, sulfur, silicon, and lead. The carbon steel shall undergo tensile testing and conform to the required tensile strength, yield strength, and elongation.1.1 This specification2 covers hot-wrought and cold-finished special quality carbon steel bars, in straight lengths only, subject to mechanical property requirements and intended for use in manufacturing components for pressure piping and other pressure-containing applications.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice establishes a standard control methodology to aid in fulfillment of shortages derived from production requirements or equipment failures.4.2 This practice encourages an inclusive understanding and communication of the control and tracking of assets, and enables meaningful discussion between parties with interest in the asset.4.3 This practice is intended to foster and enable additional standard practices related to or based on these terms and concepts.1.1 This practice covers the process by which open production and failure related demand requirements are fulfilled using existing equipment components.NOTE 1: Differing approval requirements are generally dictated by ownership issues. For example, approvals for cannibalization/reclamation of company-owned property assets may vary substantially from that required for customer-owned assets. In all cases, the specific approach to approvals and the levels of approval required are prescribed by the entity with title to/ownership of the asset. These requirements are internal to the owning entity. In general, company-owned assets are handled in accordance with established practice specific to each individual entity while customer-owned property is handled based upon established practices specific to each entity or as specified within a contractual document.1.2 This practice is intended to be applicable and appropriate for all asset-holding entities.1.3 This practice covers property assets categorized as equipment.1.4 This practice can be applied to an individual asset, groupings of assets, or to all, or a subset of an entity’s assets.1.5 This practice clarifies and enables effective and efficient support of assets in accordance with the provisions of Practice E2279.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The purpose of this test method is to define a procedure for testing components being considered for installation into a high-purity gas distribution system. Application of this test method is expected to yield comparable data among components tested for purposes of qualification for this installation.1.1 This test method covers the testing of components for total hydrocarbons (THC) contribution to a gas distribution system at ambient temperature. In addition, this test method allows testing of the component at elevated ambient temperatures as high as 70°C.1.2 This test method applies to in-line components containing electronics grade materials in the gaseous form, such as those used in semiconductor gas distribution systems.1.3 Limitations: 1.3.1 This test method is limited by the sensitivity of current instrumentation, as well as by the response time of the instrumentation. This test method is not intended to be used for components larger than 12.7-mm (1/2-in.) outside diameter nominal size. This test method could be applied to larger components; however, the stated volumetric flow rate may not provide adequate mixing to ensure a representative sample. Higher flow rates may improve the mixing but excessively dilute the sample.1.3.2 Different instrumental methods (such as flame ionization detector (FID), mass spectrometer (MS)) will yield total hydrocarbon (THC) levels that are not comparable due to different sensitivities to different molecular species. Hydrocarbon contaminants of high-purity gas distribution systems can be subdivided into two general categories: (1) noncondensable hydrocarbons (4), that are present due to difficulty of removal and relative atmospheric abundance, and (2) condensable hydrocarbons, that are often left behind on component surfaces as residues. Condensable hydrocarbons include pump oils, degreasing agents, and polishing compound vehicles.1.3.3 Because of the tremendous disparity of hydrocarbon species, it is suggested that direct comparisons be made only among data gathered using the same detection method.1.3.4 This test method is intended for use by operators who understand the use of the apparatus at a level equivalent to six months of experience.1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 5.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification defines the masses to be used when testing rescue systems and components. The masses represent personnel and equipment that may be attached to a rescue system or components. However, the masses do not represent any particular type or kind of rescuer or equipment. The masses shall be classified as follows: Type I; Type II; Type III; Type IV; and Type V.1.1 This specification defines the masses to be used when testing rescue systems and components.1.2 The masses represent personnel and equipment that may be attached to a rescue system or components. However, the masses do not represent any particular type or kind of rescuer or equipment.1.2.1 The masses chosen have been used in the past or are in current use in testing of rescue systems and components. Limiting testing to the masses listed in this specification allows meaningful comparisons between past, current, and future test results.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The user of this specification shall determine which mass(es) represent(s) the personnel and equipment attached to the system or component under test.1.5 For the purposes of this specification, mass and weight are synonymous when the object(s) representing the mass(es) are weighed in air anywhere on Earth.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification states the requirements for sound sources used for measuring the speech privacy between open offices or for measuring the laboratory performance of acoustical components. The sound source shall be a loudspeaker enclosed in a box that has a maximum dimension of 0.30 m (1 ft) on a side, to reduce spurious sound reflections. The measurements shall be carried out in a free sound field. The measurement microphone, amplifier, and level meter used to measure sound pressure levels shall satisfy the requirements prescribed. When the sound source is driven with the qualification signal, the sound output shall be adequate to maintain one-third octave-band sound pressure levels at least 10 dB above the corresponding background noise in each band at each measurement location. The directivity of the sound source shall be verified by driving the source with the qualification signal and measuring the sound pressure levels at measurement points.1.1 This specification states the requirements for sound sources used for measuring the speech privacy between open offices and for measuring the laboratory performance of acoustical components (see Test Methods E1111 and E1130).1.2 The sound source shall be a loudspeaker located in an enclosure driven with an appropriate test signal.1.3 This specification describes the sound source and method of qualifying it using a special qualification signal. Test signals required by open office test methods may differ.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The electrical properties of gate and field oxides are altered by ionizing radiation. The method for determining the dose delivered by the source irradiation is discussed in Practices E666, E668, E1249, and Guide E1894. The time dependent and dose rate effects of the ionizing radiation can be determined by comparing pre- and post-irradiation voltage shifts, ΔVot and ΔVit. This test method provides a means for evaluation of the ionizing radiation response of MOSFETs and isolation parasitic MOSFETs.5.2 The measured voltage shifts, ΔVot and ΔVit, can provide a measure of the effectiveness of processing variations on the ionizing radiation response.5.3 This technique can be used to monitor the total-dose response of a process technology.1.1 This test method covers the use of the subthreshold charge separation technique for analysis of ionizing radiation degradation of a gate dielectric in a metal-oxide-semiconductor-field-effect transistor (MOSFET) and an isolation dielectric in a parasitic MOSFET.2,3,4 The subthreshold technique is used to separate the ionizing radiation-induced inversion voltage shift, ΔVINV into voltage shifts due to oxide trapped charge, ΔVot and interface traps, ΔV it. This technique uses the pre- and post-irradiation drain to source current versus gate voltage characteristics in the MOSFET subthreshold region.1.2 Procedures are given for measuring the MOSFET subthreshold current-voltage characteristics and for the calculation of results.1.3 The application of this test method requires the MOSFET to have a substrate (body) contact.1.4 Both pre- and post-irradiation MOSFET subthreshold source or drain curves must follow an exponential dependence on gate voltage for a minimum of two decades of current.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 This practice uses a weight-loss method of wear determination for the polymeric components or materials used in human joint prostheses, using serum or demonstrated equivalent fluid for lubrication, and running under a load profile representative of the appropriate human joint application (1,2) .4 The basis for this weight-loss method for wear measurement was originally developed (3) for pin-on-disk wear studies (Practice F732) and has been extended to total hip replacements (4, 5, ISO 14242–2, and Guide F1714), and to femoro-tibial knee prostheses (6 and ISO 14243–2), and to femoro-patellar knee prostheses (6,7).3.2 While wear results in a change in the physical dimensions of the specimen, it is distinct from dimensional changes due to creep or plastic deformation, in that wear results in the removal of material in the form of polymeric debris particles, causing a loss in weight of the specimen.3.3 This practice for measuring wear of the polymeric component is suitable for various simulator devices. These techniques can be used with metal, ceramic, carbon, polymeric, and composite counter faces bearing against a polymeric material (for example, polyethylene, polyacetal, and so forth). Thus, this weight-loss method has universal application for wear studies of human joint replacements which feature polymeric bearings. This weight-loss method has not been validated for non-polymeric material bearing systems, such as metal-metal, carbon-carbon, or ceramic-ceramic. Progressive wear of such rigid bearing combinations has generally been monitored using linear, variable-displacement transducers, or by other profilometric techniques.1.1 This practice describes a laboratory method using a weight-loss (that is, mass-loss; see X1.4) technique for evaluating the wear properties of polymeric materials or devices which are being considered for use as bearing surfaces of human joint replacement prostheses. The test specimens are evaluated in a device intended to simulate the tribological conditions encountered in the human joint; for example, use of a fluid such as bovine serum, or equivalent pseudosynovial fluid shown to simulate similar wear mechanisms and debris generation found in vivo.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide will evaluate sample data that contain a high level of uncertainty for decision-making purposes and, where it is feasible, design a statistical study to estimate and reduce the sources of uncertainty. Oftentimes, historical data may be available and adequate for this purpose and no new study is needed.3.1.1 This approach will help the stakeholders better understand where the greatest sources of uncertainty are in the sampling and analysis process. Resources can be directed to where they can most reduce the overall uncertainty.3.1.2 Sampling and analysis design under this approach can often be cost-efficient because (a) the reduction in uncertainty can be done by statistical means alone and (b) the reduction can be translated into a lower number of analyses.This guide is limited to the situation where a decision is based on the mean of a population. It will only include discussions of a balanced design for the collection and analysis of sample data in order to estimate the sources of uncertainty. References to unbalanced designs are provided where appropriate.1.1 Waste management decisions generally involve uncertainty because of the fact that decisions are based on the use of sample data. When uncertainty can be reduced or controlled, a better decision can be achieved. One way to reduce or control uncertainty is through the estimation and control of the components contributing to the overall uncertainty (or variance). Control of the sizes of these variance components is an optimization process. The optimizations results can be used to either improve an existing sampling and analysis plan (if it should be found to be inadequate for decision-making purposes) or to optimize a new plan by directing resources to where the overall variance can be reduced the most.1.2 Estimation of the variance components from the total variance starts with the sampling and measurement process. The process involves two different kinds of uncertainties: random and systematic. The former is associated with imprecision of the data, while the latter is associated with bias of the data. This guide will discuss only sources of uncertainty of a random nature.1.3 There may be many sources of uncertainty in waste management decisions. However, this guide does not intend to address the issue of how these sources are identified. It is the responsibility of the stakeholders and their technical staff to analyze the sampling and measurement processes in order to identify the potentially significant sources of uncertainty. After identifying these sources, this guide will provide guidance on how to collect and analyze data to obtain an estimate of the total uncertainty and its components.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice is suitable for the removal of contaminants found on materials, parts, and components used in systems requiring a high level of cleanliness, such as oxygen. Parts shall have been precleaned to remove visible contaminants prior to using this procedure. Softgoods such as seals and valve seats may be cleaned without precleaning.5.2 This procedure may also be used as the cleanliness verification technique for coupons used during cleaning effectiveness tests as in Test Method G122.5.3 The cleaning efficiency has been shown to vary with the frequency and power density of the ultrasonic unit. Low frequencies in the 20 kHz to 25 kHz range have been found to damage soft metals such as aluminum and silver. Therefore, the specifications of the unit and the frequencies available must be considered in order to optimize the cleaning conditions without damaging the parts.1.1 This practice covers a procedure for the cleaning of materials and components used in systems requiring a high level of cleanliness, such as oxygen, by ultrasonic techniques.1.2 This practice may be used for cleaning small parts, components, softgoods, etc.1.3 The values stated in SI units are standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Note 1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
112 条记录,每页 15 条,当前第 1 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页