微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the requirements for wrought seamless or welded and drawn 18chromium-14nickel-2.5molybdenum stainless steel small diameter tubing for surgical implants. Manufacturing method shall be seamless or welded and drawn process. Tubing shall conform to chemical composition, dimensions, and mechanical properties of this specification. Mechanical properties include ultimate tensile strength, yield strength, and elongation. Outside and inside diameter, wall thickness, length and straightness shall conform to the permissible limits of this specification.1.1 This specification covers the requirements for wrought 18chromium-14nickel-2.5molybdenum stainless steel tubing used for the manufacture of surgical implants. Material shall conform to the applicable requirements of Specification F138 (for seamless) or Specification F139 (for welded and drawn). This specification addresses those product variables that differentiate small-diameter medical grade tubing from the bar, wire, sheet, and strip product forms covered in these specifications.1.2 This specification applies to cold finished straight length tubing with 3 mm [0.125 in.] and smaller nominal outside diameter (OD) and 0.5 mm [0.020 in.] and thinner nominal wall thickness.1.3 The specifications in 2.1 are referred to as the ASTM material standard(s) in this specification.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Inch-pound units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers aluminum and aluminum-alloy seamless pipe and seamless extruded tube for gas and oil transmission and distribution piping systems. The pipe and tube shall be produced from hollow extrusion ingot (cast in hollow form or pierced) and shall be extruded by use of the die and mandrel method. The pipe and tube shall conform to the chemical composition requirements specified. The determination of chemical composition shall be made in accordance with suitable chemical (test methods E 34), or spectrochemical (test methods E 227, E 607, and E 1251) methods. Heat treatment for the production of T1 and T5-type tempers shall be in accordance with Practice B 807, and for the production of T4 and T6-type tempers, except as noted, shall be in accordance with practice B 918. Unless otherwise specified, alloys 6061, 6063, and 6351 may be solution heat treated and quenched at the extrusion press in accordance with practice B 807 for the production of T4 and T6-type tempers, as applicable. The material shall conform to the tensile property requirements specified. The tension tests shall be made in accordance with test methods B 557 and B 557M. Pipe and tube heat treated at the extrusion press shall conform to all requirements specified.1.1 This specification covers seamless pipe and seamless extruded tube in the aluminum and aluminum alloys (Note 1) and tempers listed in Table 1 and Table 2, respectively. Seamless pipe and seamless tube are intended for use in applications involving internal pressure.Note 1—Throughout this specification use of the term alloy in the general sense includes aluminum as well as aluminum alloy.Note 2—For drawn seamless tubes, see Specifications B210 and B210M; for extruded tubes, Specifications B221 and B221M; for drawn seamless tubes for condensers and heat exchangers, Specifications B234 and B234M; for seamless pipe and seamless extruded tube, B241/B241M; for round welded tubes, Specification B313/B313M; for seamless condenser and heat exchanger tubes with integral fins, Specification ; for extruded structural pipe and tube, Specification B429/B429M; and for drawn tube for general purpose applications, Specification B483/B483M.1.2 Alloy and temper designations are in accordance with ANSI H35.1 [H35.1M]. The equivalent Unified Numbering System alloy designations are those of Table 3 preceded by A9, for example, A93003 for aluminum alloy 3003 in accordance with Practice E527.1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.TABLE 1 Tensile Property Limits for Extruded Seamless PipeA,BAlloy Temper Pipe Size,in. Strength, min, ksi [MPa] ElongationC,DTensile Yield (0.2 % Offset) in 2 in. [50 mm] or 4×Diameter, min, % in 5 × D(5.65)3003 H18 under 1 27.0 [185] 24.0 [165] 4 4 H112 1 and over 14.0 [95] 5.0 [35] 25 226061 T6 under 1 38.0 [260] 35.0 [240] 8 ... 1 and over 38.0 [260] 35.0 [240] 10E 96063 T6 all 30.0 [205] 25.0 [170] 8 76351 T5T6 allall 38.0 [260]42.0 [290] 35.0 [240]37.0 [255] 10E10F 99A The basis for establishment of mechanical property limits is given in Annex A1 of this specification.B To determine conformance to this specification, each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi [MPa] and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.C Elongation of full-section and sheet-type specimens is measured in 2 in.; of cut-out round specimens, 4× specimen diameter.D Elongations in 50 mm apply for pipe tested in full sections and for sheet-type specimens machined from material up through 12.5 mm in thickness having parallel surfaces. Elongations in 5 × D (at 5.65), where D and A are diameter and cross-sectional area of the specimen, respectively, apply to round test specimens machined from thicknesses over 6.30 mm.E The minimum elongation for a wall thickness up through 0.249 in. [6.3 mm] is 8 %.F For wall thickness 0.124 in. [3.20 mm] and less, the minimum elongation is 8 %.TABLE 2 Tensile Property Limits for Extruded Seamless TubeA,BTemper Specified WallThickness, in. [mm] Area, in.2 [mm2] Tensile Strength, ksi [MPa] Yield Strength(0.2 % offset)ksi [MPa], min ElongationC,Dmin max in 2 in. [50 mm] or4 × D min,% in 5 × D(5.65)EAluminum 1060FOH112 allall allall 8.5 [60]8.5 [60] 14.0 [95]... [...] 2.5 [15]2.5 [15] 2525G 2222GAlloy 3003FOH112 allall allall 14.0 [95]14.0 [95] 19.0 [130]... [...] 5.0 [35]5.0 [35] 2525 2222Alloy Alclad 3003FOH112 allall allall 13.0 [90]13.0 [90] 18.0 [125]... [...] 4.5 [30]4.5 [30] 2525 2222Alloy 5083FOH111H112 all [130.00]all [130.00]all [130.00] up through 32.0 [20 000]up through 32.0 [20 000]up through 32.0 [20 000] 39.0 [270]40.0 [275]39.0 [270] 51.0 [350]... [...]... [...] 16.0 [110]24.0 [165]16.0 [110] 141212 121010Alloy 5086FOH111H112 all [130.00]all [130.00]all [130.00] up through 32.0 [20 000]up through 32.0 [20 000]up through 32.0 [20 000] 35.0 [240]36.0 [250]35.0 [240] 46.0 [315]... [...]... [...] 14.0 [95]21.0 [145]14.0 [95] 141212 121010Alloy 6061FOH all all ... [...] 22.0 [150] 16.0I [...] 16 14T1 [16.00] all [180] ... [...] [95] 16 14 all all 26.0 [180] ... [...] 16.0 [110] 16 14T42J all all 26.0 [180] ... [...] 12.0 [85] 16 14T51 [16.00] all [240] ... [...] [205] 8 7 up through 0.249 [6.30]0.250 and over [6.30] allall 38.0 [260]38.0 [260] ... [...]... [...] 35.0 [240]35.0 [240] 810 ...9Alloy 6063FOHT1K allup through 0.500 [12.50]0.501–1.000 [12.50–25.00] ... [all]allall ... [...]17.0 [115]16.0 [110] 19.0 [130]... [...]... [...] ... [...]9.0 [60]8.0 [55] 181212 [...] 161010T4, T42L up through 0.500 [12.50] all 19.0 [130] ... [...] 10.0 [70] 14 12 0.501–1.000 [12.50–25.00] all 18.0 [125] ... [...] 9.0 [60] 14 [...] 12T5 up through 0.500 [12.50] all 22.0 [150] ... [...] 16.0 [110] 8 7 0.501–1.000 [12.50–25.0] all 21.0 [145] ... [...] 15.0 [105] 8 [...] 7T52 up through 1.000 [25.00] all 22.0 [150] 30.0 [205] 16.0M [110] 8 7T6, T62L up through 0.124 [3.20] all 30.0 [205] ... [...] 25.0 [170] 8 ... 0.125–1.000 [3.20–25.00] all 30.0 [205] ... [...] 25.0 [170] 10 7Alloy 6070FT6, T62L up through 2.999 up through 32 48.0 [330] ... [...] 45.0 [310] 6 5Alloy 6351FT4T6 allup through 0.1240.125–0.749 all...... 32.0 [220]42.0 [290]42.0 [290] ... [...]... [...]... [...] 19.0 [130]37.0 [255]37.0 [255] 16810 14...9A The basis of establishment of mechanical property limits is given in Annex A1 of this specification.B To determine conformance to this specification, each value for ultimate tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi [MPa] and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.C Elongation of full-section and sheet-type specimens is measured in 2 in.; of cut-out round specimens, in 4× specimen diameter.D For material of such dimensions that a standard test specimen cannot be taken, or for material thinner than 0.062 in., the test for elongation is not required.E Elongations in 50 mm apply for tube tested in full section and for sheet-type specimens machined from material up through 12.5 mm in thickness having parallel surfaces. Elongations in 5× diameter (5.65), where D and A are diameter and cross-sectional area of the specimen, respectively, apply to round test specimens machined from thickness over 6.30 mm. For tube of such dimensions that a standard test specimen cannot be taken, the test for elongation is not required.F These alloys are also produced in the F temper, for which no mechanical properties are specified.G Maximum tensile strength and minimum elongation apply to tubes having diameters from 1.000 in. to 4.500 in. and wall thickness from 0.050 in. to 0.169 in. only. Minimum elongation applies to tubes having diameters from 25.00 to 115.00 mm and wall thickness over 1.30 through 4.30 mm only.H Upon heat treatment, annealed (0 temper) material shall be capable of developing the mechanical properties applicable to T42 temper material, and upon solution and precipitation heat treatment shall be capable of developing the mechanical properties applicable to T62 temper material.I Yield strength is maximum [110 MPa] max.J For stress-relieved tempers (T4510, T4511, T6510 and T6511) characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.K Formerly designated T42 temper. Properly aged precipitation heat-treated 6063-T1 extruded products are designated T5.L While material in the T42 and T62 tempers is not available from the material producer, the properties are listed to indicate those which can usually be obtained by the user when the material is properly solution heat treated or solution and precipitation heat treated from the O (annealed) or F (as-fabricated) tempers. These properties apply when samples of material supplied in the O or F temper are heat treated by the producer to the T42 or T62 tempers to determine that the material will respond to proper thermal treatment. Properties attained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment.M Maximum yield strength is 25.0 ksi [170 MPa].TABLE 3 Chemical CompositionA,B,CAlloy Composition, %Silicon Iron Copper Manganese Magnesium Chromium Zinc Vanadium Titanium Other ElementsD AluminumEach TotalE10603003 0.250.6 0.350.7 0.050.05–0.20 0.031.0–1.5 0.03... ...... 0.050.10 0.05... 0.03... 0.030.05 ...0.15 99.60 minFremainderAlclad 3003 3003 alloy clad inside or outside with 7072 alloy5083 0.40 0.40 0.10 0.40–1.0 4.0–4.9 0.05–0.25 0.25 ... 0.15 0.05 0.15 remainder5086 0.40 0.50 0.10 0.20–0.7 3.5–4.5 0.05–0.25 0.25 ... 0.15 0.05 0.15 remainder6061G 0.40–0.8 0.7 0.15–0.40 0.15 0.8–1.2 0.04–0.35 0.25 ... 0.15 0.05 0.15 remainder6063 0.20–0.6 0.35 0.10 0.10 0.45–0.9 0.10 0.10 ... 0.10 0.05 0.15 remainder6070 1.0–1.7 0.50 0.15–0.40 0.40–1.0 0.50–1.2 0.10 0.25 ... 0.15 0.05 0.15 remainder6351 0.7–1.3 0.50 0.10 0.40–0.8 0.40–0.8 ... 0.20 ... 0.20 0.05 0.15 remainder7072H 0.7 Si + Fe 0.10 0.10 0.10 ... 0.8–1.3 ... ... 0.05 0.15 remainderA Limits are in percent maximum unless shown as a range or stated otherwise.B Analysis shall be made for the elements for which limits are shown in this table.C For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding method of Practice E29.D Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered non-conforming.E Other ElementsTotal shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.F The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.G In 1965 the requirements for Alloy 6062 were combined with those of Alloy 6061 by revision of the minimum chromium content from 0.15 to 0.04. For this reason, Alloy 6062 was cancelled.H Composition of cladding alloy as applied during the course of manufacture. The sample from finished tube shall not be required to conform to these limits.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM B88M-20 Standard Specification for Seamless Copper Water Tube (Metric) Active 发布日期 :  1970-01-01 实施日期 : 

16.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in Table 8, an observed value or calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.AbstractThis specification covers seamless copper alloy water tubes for general plumbing and similar applications in fluid conveyance. These water tubes made from UNS C10200, C12000, and C12200 copper alloys are commonly used with solder, flared, or compression-type fittings. The materials should be cold-drawn to size and the tubes finished by cold working and annealing to produce the required temper and surface finish. When tubes are furnished in coils, annealing is done after coiling, while those furnished in straight lengths should be in the drawn temper. The numerical values in this specification are not presented in inch-pound units, but rather, in metric or SI units only.1.1 This specification covers seamless copper water tube suitable for general plumbing, similar applications for the conveyance of fluids, and commonly used with solder, flared, or compression-type fittings. The type of copper water tube suitable for any particular application is determined by the internal or external fluid pressure, by the installation and service conditions, and by local requirements. Means of joining or bending are also factors that affect the selection of the type of tube to be used.2NOTE 1: Annealed tube is suitable for use with flared or compression fittings, and with solder-type fittings, provided rounding and sizing of the tube ends is performed where needed.NOTE 2: Drawn temper tube is suitable for use with solder-type fittings. Types A and B tube, in the drawn temper, are suitable for use with certain types and sizes of compression fittings.1.2 The tube shall be produced from the following coppers, and the manufacturer has the option to supply any one of them, unless otherwise specified:CopperUNS No. Previously UsedDesignation Description     C10200 OF Oxygen free without  residual deoxidantsC12000 DLP Phosphorus deoxidized, low residual phosphorusC12200 DHP Phosphorus deoxidized, high residual phosphorus1.3 The assembly of copper plumbing or fire sprinkler systems by soldering is described in Practice B828.1.4 Solders for joining copper potable water or fire sprinkler systems are covered by Specification B32. The requirements for acceptable fluxes for these systems are covered by Specification B813.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.NOTE 3: This specification is the SI companion to Specification B88.1.6 The following safety hazards caveat pertains only to the test methods portion, Section 15, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers standard requirements for welded austenitic stainless steel feedforward heater tubes including those bent, if specified, into the form of U-tubes for application in tubular feed-water heaters. All finished straight tubing or straight tubing ready for U-bending shall be furnished in the solution-annealed condition. The steel shall conform to the required chemical composition for carbon, phosphorus, chromium, molybdenum, nitrogen, and copper. The material shall also conform to tensile properties such as tensile strength, yield strength, and elongation. The steel shall undergo mechanical tests such as tension test, hardness test, reverse bend test, flattening test, flange test, pressure test, hydrostatic test, and air underwater test. Nondestructive test (electric test) shall be performed and corrosion resisting properties shall be determined for each sample tube.1.1 This specification2 covers seamless and welded austenitic stainless steel feedwater heater tubes including those bent, if specified, into the form of U-tubes for application in tubular feed-water heaters.1.2 The tubing sizes covered shall be 5/8 to 1 in. [15.9 to 25.4 mm] inclusive outside diameter, and average or minimum wall thicknesses of 0.028 in. [0.7 mm] and heavier.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers seamless and welded titanium and titanium alloy tubing on which the external or internal surface, or both, has been modified by a cold forming process to produce an integral enhanced surface for improved heat transfer. The tubes are used in surface condensers, evaporators, heat exchangers and similar heat transfer apparatus in unfinned end diameters of a specific size. Tubes shall be furnished with unenhanced ends in the annealed condition and shall be suitable for rolling-in operations. Each tube shall be subject to a nondestructive eddy current test, and either a pneumatic or hydrostatic test.1.1 This specification covers seamless and welded titanium and titanium alloy tubing on which at least part of the external or internal surface has been enhanced by cold forming for improved heat transfer. The tubes are used in surface condensers, evaporators, heat exchangers, coils, and similar heat transfer apparatus in diameters up to and including 1 in. [25.4 mm]. The base tube wall thickness is typically at least 0.049 in. [1.245 mm] average, but lighter gauge may be negotiated with the manufacturer.1.2 Tubing purchased to this specification will typically be inserted through close-fitting holes in tubesheets, baffles, or support plates spaced along the tube length such as defined in the Tubular Exchanger Manufacturer’s Association (TEMA) Standard.2 The tube ends will also be expanded, and may then be welded. Tube may also be bent to form U-tubes or be coiled or otherwise formed, although tight radii may require unenhanced length for the bends.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the order. Combining values from the two systems may result in non-conformance. Within the text, the SI units are shown in brackets. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.1.4 The following precautionary statement pertains to the test method portion only: Section 8, 9, 10 and S1 of this specification:This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM B643-18 Standard Specification for Copper-Beryllium Alloy Seamless Tube Active 发布日期 :  1970-01-01 实施日期 : 

This specification establishes requirements for copper-beryllium alloy seamless tube in straight lengths. The material of manufacture shall be Copper Alloy UNS C17200, cast and worked into tubular form that shall have heat traceable identity. The product shall be manufactured by a combination of hot and cold working, annealing, or precipitation heat treatment, or both, as to produce a uniform wrought structure in the finished product, to meet the temper specified (TB00 (A), TD04 (H), TF00 (AT), or TH04 (HT)). The material shall conform to the chemical composition requirements prescribed for beryllium, copper, aluminum, silicon, and additive elements such as nickel, cobalt, and iron, as determined by chemical analysis. The alloy shall also conform to the specified physical property requirements such as microstructure and grain size, and to the prescribed dimensional and mass requirements. The material shall meet the requirements specified for mechanical properties before and after precipitation heat treatment, such as Rockwell hardness, tensile strength, yield strength, and elongation. Requirements for tension test and other tests to be used to determine the properties mentioned including sampling and specimen preparation are detailed.1.1 This specification establishes requirements for copper-beryllium alloy seamless tube in straight lengths. Copper Alloy UNS C17200 will be the alloy furnished whenever Specification B643 is specified.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazard caveat pertains only to the test methods described in this specification.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

16.1 For the purpose of determining compliance with the specified limits of property requirements, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29.Test Rounded Units for Observedor Calculated Value Chemical composition, tolerance (when expressed in decimals) nearest unit in the last right hand place   of figures of the specified limitTensile strength and yield strength nearest 1000 psi (10 MPa)Elongation nearest 1 %AbstractThis specification covers the standard requirements for wrought zirconium and zirconium alloy seamless and welded tubes for nuclear applications except for nuclear fuel cladding. Five grades of reactor grade zirconium and zirconium alloys with R60001, R60802, R60804, R60901, and R60904 UNS number designations are described. Material shall be made from ingots produced by vacuum arc melting, electron beam melting, or other melting process to be carried out in furnaces conventionally used for reactive metals. Seamless tubes may be made by billet extrusion with subsequent cold working, by drawing, swaging, or rocking, with intermediate annealing. Welded tubing shall be made from flat-rolled products by an automatic or semiautomatic welding process with no addition of filler metal and shall be cold reduced by drawing, swaging, or rocking. The products shall be in the recrystallized or cold-worked and stress-relieved conditions and shall be furnished by as-cold reducing, pickling, grounding, polishing, or end-saw cutting, machining, or shearing. Chemical and product analysis shall be performed on the materials which shall meet the chemical composition requirements for tin, iron, chromium, nickel, niobium, oxygen, and other impurity elements. The tensile properties shall be determined by a tensile test method and shall conform to the tensile strength, yield strength, and elongation limits. Steam and water corrosion tests and hydrostatic test shall be conducted to determine the acceptance criteria for corrosion and internal hydrostatic pressure, respectively. Burst properties, contractile strain ratio, grain size, and hydride orientation of the finished tubing shall also be determined.1.1 This specification covers seamless and welded wrought zirconium and zirconium-alloy tubes for nuclear application. Nuclear fuel cladding is covered in Specification B811.1.2 Five grades of reactor grade zirconium and zirconium alloys suitable for nuclear application are described.1.2.1 The present UNS numbers designated for the five grades are given in Table 1.1.3 Unless a single unit is used, for example corrosion mass gain in mg/dm2, the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.1.4 The following precautionary caveat pertains only to the test method portions of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification establishes the requirements for seamless copper and copper alloy tubing on which the external or internal surface, or both, has been modified by a coldforming process to produce an integral enhanced surface for improved heat transfer. The tubes are typically used in surface condensers, evaporators, and heat exchangers. The seamless copper and copper alloy tubing shall have the internal or external surface, or both, modified by a cold forming process to produce an integral enhanced surface for improved heat transfer. The tube, after enhancing, shall be supplied in the annealed (O61) or as-fabricated temper. The enhanced sections of tubes in the as-fabricated temper are in the cold-worked condition produced by the fabricating operation. The unenhanced sections of tubes in the asfabricated temper are in the temper of the tube prior to enhancing, annealed (O61), or light drawn (H55), and suitable for rolling-in operations. Samples of annealed-temper (O61) tubes selected for test shall be subjected to microscopical examination and shall show uniform and complete recrystallation. Grain size and mechanical properties such as tensile strength and yield strength of the alloys shall be determined. Expansion and flattening tests shall be done to the alloys for performance evaluation. Non-destructive tests such as eddy-current test, hydrostatic test, and pneumatic test shall be done as well.1.1 This specification2 covers the requirements for seamless copper and copper alloy tubing on which the external or internal surface, or both, has been modified by a cold-forming process to produce an integral enhanced surface for improved heat transfer.1.2 The tubes are typically used in surface condensers, evaporators, and heat exchangers.1.3 The product shall be produced of the following coppers or copper alloys, as specified in the ordering information.Copper orCopper AlloyUNS No. Type of Metal   C10100 Oxygen-free electronicC10200 Oxygen-free without residual deoxidantsC10300 Oxygen-free, extra low phosphorusC10800 Oxygen-free, low phosphorusC12000 DLP Phosphorized, low residual phosphorus(See Note 1)C12200 DHP, Phosphorized, high residual phosphorus(See Note 1)C14200 DPA Phosphorized arsenical (See Note 1)C15630 Nickel PhosphorusC19200 Phosphorized, 1 % ironC23000 Red BrassC44300 Admiralty Metal Types B,C44400 C, andC44550 DC60800 Aluminum BronzeC68700 Aluminum Brass Type BC70400 95-5 Copper-NickelC70600 90-10 Copper-NickelC70620 90-10 Copper-Nickel (Modified for Welding)Copper orCopper AlloyUNS No. Type of Metal   C71000 80-20 Copper-Nickel Type AC71500 70-30 Copper-NickelC71520 70-30 Copper-Nickel (Modified for Welding)C72200 Copper-NickelNOTE 1: Designations listed in Classification B224.1.4 Units—The values stated in either in-pound units or SI units are to be regarded separately as the standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems could result in nonconformance with the specification.1.5 Product produced in accordance with the Supplementary Requirements section for military applications shall be produced only to the inch-pound system of this specification.1.6 The following safety hazard caveat pertains only to the test methods described in this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Sections 1, 12 and 18.1.7 (Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.)1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
252 条记录,每页 15 条,当前第 1 / 17 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页