微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers the basic requirements and associated test methods for water-based corrosion protective zinc/aluminum dispersion inorganic basecoats, and optional sealers and topcoats for fasteners. The basecoat can contain chrome (C) or be non-chrome (NC). These coatings are applied to ferrous parts by conventional dip-spin, dip-drain, or spray methods, which can be handled through a cleaning, coating, and baking operation, and which are not adversely affected by baking temperatures up to 330 °C. The coatings are classified into six grades (Grades 1 to 6) according to the required minimum basecoat thickness, and when tested, shall conform accordingly to appearance, adhesion, corrosion resistance, blister, thread fit, and hydrogen embrittlement requirements. The coating process does not induce the possibility of internal hydrogen embrittlement provided that the fasteners have not been cleaned or pre-treated with an acid or phosphate. Alkaline cleaning or vapor degreasing is required along with shot blasting to remove rust or scale. In this specification, units are presented in the metric scale.1.1 This specification covers the basic requirements for water-based zinc/aluminum dispersion inorganic basecoats and optional sealers and topcoats for fasteners. The basecoat can contain chrome (C) or be non-chrome (NC).1.2 These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, coating, and baking operation, and which are not adversely affected by baking temperatures up to 330°C.1.3 The coating process does not induce the possibility of internal hydrogen embrittlement providing that the fasteners have not been cleaned or pre-treated with an acid or phosphate. Alkaline cleaning or vapor degreasing is required along with shot blasting to remove rust or scale.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Different electroplating systems can be corroded under the same conditions for the same length of time. Differences in the average values of the radius or half-width or of penetration into an underlying metal layer are significant measures of the relative corrosion resistance of the systems. Thus, if the pit radii are substantially higher on samples with a given electroplating system, when compared to other systems, a tendency for earlier failure of the former by formation of visible pits is indicated. If penetration into the semi-bright nickel layer is substantially higher, a tendency for earlier failure by corrosion of basis metal is evident.1.1 This test method provides a means for measuring the average dimensions and number of corrosion sites in an electroplated decorative nickel plus chromium or copper plus nickel plus chromium coating on steel after the coating has been subjected to corrosion tests. This test method is useful for comparing the relative corrosion resistances of different electroplating systems and for comparing the relative corrosivities of different corrosive environments. The numbers and sizes of corrosion sites are related to deterioration of appearance. Penetration of the electroplated coatings leads to appearance of basis metal corrosion products.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers pipe and fittings fabricated by contact molding, for pressures to 150 psi and made of a commercial-grade polyester resin. Included are requirements for materials, properties, design, construction, dimensions, tolerances, workmanship, and appearance.1.2 This specification does not cover resins other than polyester, reinforcing materials other than glass fibers or fabrication methods other than contact molding.NOTE 1: For the purposes of this specification, the term polyester resin will include both polyester and vinylester resins.1.3 This specification does not cover the design of pipe and fittings intended for use with liquids heated above their flash points.1.4 The values stated in inch-pound units are to be regarded as the standard. The SI units given in parentheses are provided for information purposes only.1.5 The following precautionary caveat pertains only to Section 10, the test methods portion, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 It is important to evaluate the corrosion resistance of ferrous metal components used in low-slope roofing and waterproofing because they provide integrity and securement of other system components, such as insulation and membranes. Corrosion of ferrous metal components may result in their early deterioration and may lead to roofing or waterproofing system failure.5.2 Results from testing ferrous metal components in an acidic atmosphere serve as an indication of the relative corrosion resistance of such components, coated or uncoated, to the environment of the test chamber. The results are not to be construed as a general guideline to the corrosion resistance of such components in other environments or in usage that may be conducive to corrosion.5.3 Moist air containing sulfur dioxide quickly produces easily visible corrosion on many ferrous metals. It is therefore a test medium suited to detect pores or other sources of weakness in protective barrier coatings.5.4 This test method applies primarily to evaluating the effectiveness of barrier coatings to provide general corrosion protection under test conditions. It is not intended to evaluate the resistance of the components to specific corrosion mechanisms such as crevice, galvanic, or stress corrosion.5.5 This test method does not address abrasion resistance of barrier coatings when the fasteners are driven through above roof deck components, such as an existing built-up roof or insulations, or both.5.6 Only the above deck portion of fasteners subjected to this test method is evaluated.1.1 This test method covers components of ferrous metal fastener assemblies, excluding those of stainless steel, such as fasteners, stress plates, and batten bars used in low slope roofing and waterproofing, to a sulfurous acid environment. This test method evaluates relative corrosion resistance of the components by determination of percentage of rust or white rust.1.2 The components may or may not have a surface treatment applied.1.3 A limiting factor is the subjectiveness when determining actual percentage of rust or white rust corrosion.1.4 Other performance characteristics of ferrous metal components such as abrasion resistance of barrier coatings are not evaluated in this method.1.5 This test method was developed based on Practice G87.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 In the past, ASTM specifications for low-alloy weathering steels, such as Specifications A242/A242M, A588/A588M, A606/A606M Type 4, A709/A709M Grade 50W, HPS 70W, and 100W, A852/A852M, and A871/A871M stated that the atmospheric corrosion resistance of these steels is “approximately two times that of carbon structural steel with copper.” A footnote in the specifications stated that “two times carbon structural steel with copper is equivalent to four times carbon structural steel without copper (Cu 0.02 maximum).” Because such statements relating the corrosion resistance of weathering steels to that of other steels are imprecise and, more importantly, lack significance to the user (1 and 2),4 the present guide was prepared to describe more meaningful methods of estimating the atmospheric corrosion resistance of weathering steels.5.2 The first method of this guide is intended for use in estimating the expected long-term atmospheric corrosion losses of specific grades of low-alloy steels in various environments, utilizing existing short-term atmospheric corrosion data for these grades of steel.5.3 The second method of this guide is intended for use in estimating the relative atmospheric corrosion resistance of a specific heat of low-alloy steel, based on its chemical composition.5.4 It is important to recognize that the methods presented here are based on calculations made from test data for flat, boldly exposed steel specimens. Atmospheric corrosion rates can be much higher when the weathering steel remains wet for prolonged periods of time, or is heavily contaminated with salt or other corrosive chemicals. Therefore, caution must be exercised in the application of these methods for prediction of long-term performance of actual structures.1.1 This guide presents two methods for estimating the atmospheric corrosion resistance of low-alloy weathering steels, such as those described in Specifications A242/A242M, A588/A588M, A606/A606M Type 4, A709/A709M grades 50W, HPS 70W, and 100W, A852/A852M, and A871/A871M. One method gives an estimate of the long-term thickness loss of a steel at a specific site based on results of short-term tests. The other gives an estimate of relative corrosion resistance based on chemical composition.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Electrochemical corrosion rate measurements often provide results in terms of electrical current. Although the conversion of these current values into mass loss rates or penetration rates is based on Faraday’s Law, the calculations can be complicated for alloys and metals with elements having multiple valence values. This practice is intended to provide guidance in calculating mass loss and penetration rates for such alloys. Some typical values of equivalent weights for a variety of metals and alloys are provided.3.2 Electrochemical corrosion rate measurements may provide results in terms of electrical resistance. The conversion of these results to either mass loss or penetration rates requires additional electrochemical information. Some approaches for estimating this information are given.3.3 Use of this practice will aid in producing more consistent corrosion rate data from electrochemical results. This will make results from different studies more comparable and minimize calculation errors that may occur in transforming electrochemical results to corrosion rate values.1.1 This practice covers the providing of guidance in converting the results of electrochemical measurements to rates of uniform corrosion. Calculation methods for converting corrosion current density values to either mass loss rates or average penetration rates are given for most engineering alloys. In addition, some guidelines for converting polarization resistance values to corrosion rates are provided.1.2 The values stated in SI units are to be regarded as standard. Other units of measurement are included in this standard because of their usage.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The procedures given are designed to remove corrosion products without significant removal of base metal. This allows an accurate determination of the mass loss of the metal or alloy that occurred during exposure to the corrosive environment.4.2 These procedures, in some cases, may apply to metal coatings. However, possible effects from the substrate must be considered.1.1 This practice covers suggested procedures for preparing bare, solid metal specimens for tests, for removing corrosion products after the test has been completed, and for evaluating the corrosion damage that has occurred. Emphasis is placed on procedures related to the evaluation of corrosion by mass loss and pitting measurements. (Warning—In many cases the corrosion product on the reactive metals titanium and zirconium is a hard and tightly bonded oxide that defies removal by chemical or ordinary mechanical means. In many such cases, corrosion rates are established by mass gain rather than mass loss.)1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 1.1 and 7.2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is normally used for stress-corrosion screening for the development of Al-Zn-Mg-Cu alloys containing less than 0.26 % copper. Effects on stress-corrosion resistance due to variables such as composition, thermo-mechanical processing, other fabrication variables, and magnitude of applied stress may be compared.4.2 For a given mechanical method of stressing, the relative stress-corrosion resistance of the low copper Al-Zn-Mg-Cu alloys in atmospheric exposure correlates better with performance in boiling 6 % sodium chloride solution than with other accelerated testing media (7-9). In addition, this practice is relatively rapid.4.3 This practice is not applicable to 2XXX (Al-Cu), 5XXX (Al-Mg), 6XXX (Al-Mg-Si), and the 7XXX (Al-Zn-Mg-Cu) series alloys containing more than 1.2 % copper.4.3.1 For 7XXX series alloys containing between 0.26 % and 1.2 % copper, there is no general agreement as to whether this practice or Practice G44 correlates better with stress-corrosion resistance in service (5-8, 10).1.1 This practice primarily covers the test medium which may be used with a variety of test specimens and methods of applying stress. Exposure times, criteria of failure, and so on, are variable and not specified.1.2 This stress-corrosion testing practice is intended for statically loaded smooth non-welded or welded specimens of 7XXX series Al-Zn-Mg-Cu alloys containing less than 0.26 % copper.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 8 for additional precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice is intended solely for the evaluation of metallic-coated, painted metallic-coated, and painted nonmetallic-coated materials used for the manufacture of cold formed framing members.5.2 Correlation and extrapolation of corrosion performance based on exposure to the test environment provided by Practice B117 are not always predictable. Correlation and extrapolation should be considered only in cases where appropriate corroborating long-term atmospheric exposures have been conducted.5.3 This practice assesses whether coated materials not currently in Specification A1003/A1003M satisfy the required minimum corrosion characteristics.1.1 This practice covers procedures for establishing the acceptability of metallic-coated steel sheet, painted metallic-coated steel sheet, and painted nonmetallic-coated steel sheet for use as cold formed framing members.1.2 This practice shall be used to assess the corrosion resistance of different coatings on steel sheet in a laboratory test. It shall not be used as an application performance standard for the cold formed framing members.1.3 The practice shall be used to evaluate coatings under consideration for addition to Specification A1003/A1003M.1.4 The values stated in either inch-pound or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other.1.5 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes, excluding those in tables and figures, shall not be considered as requirements of the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Disposition of aluminum-based spent nuclear fuel will involve:4.1.1 Removal from the existing storage or transfer facility,4.1.2 Characterization or treatment, or both, of the fuel or the resulting waste form, or both,4.1.3 Placement of the waste form in a canister,4.1.4 Placement of the canister in a safe and environmentally sound interim storage facility,4.1.5 Removal from the interim storage facility and transport to the repository,4.1.6 Placement in a waste container,4.1.7 Emplacement in the repository, and4.1.8 Repository closure and geologic disposal. Actions in each of these steps may significantly impact the success of any subsequent step.4.2 Aluminum-based spent nuclear fuel and the aluminum-based waste forms display physical and chemical characteristics that differ significantly from the characteristics of commercial nuclear fuels and from high level radioactive waste glasses. For example, some are highly enriched and most have heterogeneous microstructures that include very small, uranium-rich particles. The impact of this difference on repository performance must be evaluated and understood.4.3 The U.S. Nuclear Regulatory Commission has licensing authority over public domain transportation and repository disposal (and most of the interim dry storage) of spent nuclear fuels and high-level radioactive waste under the requirements established by 10 CFR 60, 10 CFR 71, and 10 CFR 72. These requirements outline specific information needs that should be met through test protocols, for example, those mentioned in this guide. The information developed from the tests described in this guide is not meant to be comprehensive. However, the tests discussed here will provide corrosion property data to support the following information needs.4.3.1 A knowledge of the solubility, leaching, oxidation/reduction reactions, and corrosion of the waste form constituents in/by the repository environment (dry air, moist air, and repository relevant water) (see 10 CFR 60.112 and 135).4.3.2 A knowledge of the effects of radiolysis and temperature on the oxidation, corrosion, and leaching behavior (see 10 CFR 60.135).4.3.3 A knowledge of the temperature dependence of the solubility of waste form constituents plus oxidation and corrosion products (see 10 CFR 60.135).4.3.4 Information from laboratory experiments or technical analyses, or both, about time dependence of the internal condition of the waste package (see 10 CFR 60.143 and 10 CFR 72.76).4.3.5 Laboratory demonstrations of the effects of the electrochemical differences between the aluminum-based waste form and the candidate packaging materials on galvanic corrosion (see 10 CFR 71.43) or the significance of electrical contact between the waste form and the packaging materials on items outlined in 4.3.1 – 4.3.4 (see 10 CFR 60.135), or both.4.3.6 Information on the risk involved in the receipt, handling, packaging, storage, and retrieval of the waste forms (see 10 CFR 72.3).4.3.7 Information on the physical and chemical condition of the waste form upon repository placement so that items outlined in 4.3.1 – 4.3.4 can be evaluated (see 10 CFR 60.135).4.3.8 Knowledge of the degradation of the waste form during interim storage so that operational safety problems with respect to its removal from storage can be assessed, if such removal is necessary (see 10 CFR 72.123).4.3.9 Knowledge of the condition of the waste form prior to repository placement so that items outlined in 4.3.1 – 4.3.4 are properly addressed (see 10 CFR 60.135).4.4 Conditions expected during each stage of the disposition process must be addressed. Exposure conditions anticipated over the interim storage through geologic disposition periods include dry and moist air, and aqueous environments. The air environments are associated with interim storage and the early stages of repository storage while the aqueous environments arise after water intrusion into the repository has caused corrosion-induced failure of the waste package.1.1 This guide covers corrosion testing of aluminum-based spent nuclear fuel in support of geologic repository disposal (per the requirements in 10 CFR 60 and 40CFR191). The testing described in this document is designed to provide data for analysis of the chemical stability and radionuclide release behavior of aluminum-based waste forms produced from aluminum-based spent nuclear fuels. The data and analyses from the corrosion testing will support the technical basis for inclusion of aluminum-based spent nuclear fuels in the repository source term. Interim storage and transportation of the spent fuel will precede geologic disposal; therefore, reference is also made to the requirements for interim storage (per 10 CFR 72) and transportation (per 10 CFR 71). The analyses that will be based on the data developed are also necessary to support the safety analyses reports (SARs) and performance assessments (PAs) for disposal systems.1.2 Spent nuclear fuel that is not reprocessed must be safely managed prior to transportation to, and disposal in, a geologic repository. Placement in an interim storage facility may include direct placement of the irradiated fuel or treatment of the fuel prior to placement, or both. The aluminum-based waste forms may be required to be ready for geologic disposal, or road ready, prior to placement in extended interim storage. Interim storage facilities, in the United States, handle fuel from civilian commercial power reactors, defense nuclear materials production reactors, and research reactors. The research reactors include both foreign and domestic reactors. The aluminum-based fuels in the spent fuel inventory in the United States are primarily from defense reactors and from foreign and domestic research reactors. The aluminum-based spent fuel inventory includes several different fuel forms and levels of 235U enrichment. Highly enriched fuels (235U enrichment levels >20 %) are part of this inventory.1.3 Knowledge of the corrosion behavior of aluminum-based spent nuclear fuels is required to ensure safety and to support licensing or other approval activities, or both, necessary for disposal in a geologic repository. The response of the aluminum-based spent nuclear fuel waste form(s) to disposal environments must be established for configuration-safety analyses, criticality analyses, PAs, and other analyses required to assess storage, treatment, transportation, and disposal of spent nuclear fuels. This is particularly important for the highly enriched, aluminum-based spent nuclear fuels. The test protocols described in this guide are designed to establish material response under the repository-relevant conditions.1.4 The majority of the aluminum-based spent nuclear fuels are aluminum clad, aluminum-uranium alloys. The aluminum-uranium alloy typically consists of uranium aluminide particles dispersed in an aluminum matrix. Other aluminum-based fuels include dispersions of uranium oxide, uranium silicide, or uranium carbide particles in an aluminum matrix. These particles, including the aluminides, are generally cathodic to the aluminum matrix. Selective leaching of the aluminum in the exposure environment may provide a mechanism for redistribution and relocation of the uranium-rich particles. Particle redistribution tendencies will depend on the nature of the aluminum corrosion processes and the size, shape, distribution and relative reactivity of the uranium-rich particles. Interpretation of test data will require an understanding of the material behavior. This understanding will enable evaluation of the design and configuration of the waste package to ensure that unfilled regions in the waste package do not provide sites for the relocation of the uranium-rich particles into nuclear critical configurations. Test samples must be evaluated, prior to testing, to ensure that the size and shape of the uranium-rich particles in the test samples are representative of the particles in the waste form being evaluated.1.5 The use of the data obtained by the testing described in this guide will be optimized to the extent the samples mimic the condition of the waste form during actual repository exposure. The use of Practice C1174 is recommended for guidance. The selection of test samples, which may be unaged or artificially aged, should ensure that the test samples and conditions bound the waste form/repository conditions. The test procedures should carefully describe any artificial aging treatment used in the test program and explain why that treatment was selected.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The guide is intended to facilitate the recording of corrosion test results and does not imply or endorse any particular database design or schema. It provides a useful reference to be consulted before initiating a corrosion test to be sure plans are made to record all relevant data.4.2 Corrosion tests are usually performed following a prescribed test procedure that is often not a standard test method. Most corrosion tests involve concurrent exposure of multiple specimens of one or more materials (refer to 6.1.1).4.3 This guide is designed to record data for individual specimens with groupings by separate tests (as contrasted to separate test methods) as described in 4.2 and 6.1.1. Consequently, some of the individual fields may apply to all of the specimens in a single test, while others must be repeated as often as necessary to record data for individual specimens.4.4 The guidelines provided are designed for recording data for entry into computerized material performance databases. They may be useful for other applications where systematic recording of corrosion data is desired.4.5 Reliable comparisons of corrosion data from multiple sources will be expedited if data are provided for as many of the listed fields as possible. Comparisons are possible where data are limited, but some degree of uncertainty will be present.4.6 Certain specialized corrosion tests may require additional data elements to fully characterize the data recorded. This guide does not preclude these additions. Other ASTM guides for recording data from mechanical property tests may be helpful.4.7 This guide does not cover the recording of data from electrochemical corrosion tests.4.8 These material identification guidelines are compatible with Guide E1338.1.1 This guide covers the data categories and specific data elements (fields) considered necessary to accommodate desired search strategies and reliable data comparisons in computerized corrosion databases. The data entries are designed to accommodate data relative to the basic forms of corrosion and to serve as guides for structuring multiple source database compilations capable of assessing compatibility of metals and alloys for a wide range of environments and exposure conditions.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 These test methods provide a reliable means for predicting the inhibiting or corrosive properties of admixtures to be used in concrete.3.2 The total integrated (coulombs) current is calculated to provide an indication of the corrosion that occurs due to the macrocell corrosion.3.3 These test methods are useful for development studies of corrosion inhibitors to be used in concrete.3.4 These test methods have been used elsewhere with good agreement between corrosion as measured by these test methods and corrosion damage on the embedded steel (1-4).4 These test methods might not properly rank the performance of different corrosion inhibitors, especially at concrete covers over the steel less than 40 mm (1.5 in.) or water-to-cement ratios above 0.45. The concrete mixture proportions and cover over the steel are chosen to accelerate chloride ingress. Some inhibitors might have an effect on this process, which could lead to results that would differ from what would be expected in actual use (5).1.1 These test methods cover a procedure for determining the effects of chemical admixtures on the corrosion of metals in concrete. These test methods can be used to evaluate materials intended to inhibit chloride-induced corrosion of steel in concrete. It can also be used to evaluate the corrosivity of admixtures in a chloride environment.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F1110-09(2020) Standard Test Method for Sandwich Corrosion Test Active 发布日期 :  1970-01-01 实施日期 : 

5.1 The data generated by this test method shall be used to determine whether aircraft structural aluminum alloys are liable to be corroded or damaged by application of the test material during routine maintenance operations.5.2 Interpretation of the sandwich corrosion test results is based on a comparison of the appearance of faying surfaces of three sets of coupons. One set of test coupons is exposed with reagent water only in the faying surfaces, to establish the baseline (controls) against which the panels exposed to the test material are compared. Disregard corrosion at cut edges of the test coupons.5.3 The relative corrosion severity rating system is provided in order to allow a numerical classification of the test results and to eliminate the necessity for elaborate weight loss measurements. Pitting corrosion, which is rated 4—extensive (severe) corrosion, may involve only a negligible weight loss.5.4 Relative corrosion severity rating system:Appearance/Corrosion:0—No visible corrosion and no discoloration present1—Very slight corrosion or very slight discoloration, and/or up to 5 % of areaA corroded2—Discoloration and/or up to 10 % of areaA corroded3—Discoloration and/or up to 25 % of areaA corroded4—Discoloration and/or more than 25 % of areaA corroded, and/or pitting  present(A) ”Area” refers to area under the filter paper, or if no filter paper is used, the area where the test material was applied.1.1 This test method defines the procedure for evaluating the corrosivity of aircraft maintenance chemicals, when present between faying surfaces (sandwich) of aluminum alloys commonly used for aircraft structures. This test method is intended to be used in the qualification and approval of compounds employed in aircraft maintenance operations.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information.1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements appear in Section 9.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is especially useful for evaluating the adequacy of quenching when performed on material in the as-quenched condition. The practice may also be used to study the effect of subsequent thermal processes (for example, paint or bonding cures) or of actual precipitation treatments on the inherent type of corrosion. Intergranular corrosion resistance of heat treatable aluminum alloys is often directly related to the quenching conditions applied after solution heat treatment and to the subsequent aging treatment.44.2 This practice is not well suited for non-heat treatable work hardening aluminum alloys, such as the 1XXX, 3XXX, and 5XXX series (see Test Method G67).4.3 This practice does not deal with the interpretation of resulting intergranular corrosion. The significance of the extent and depth of any intergranular corrosion resulting from this test is to be agreed upon between producer and user.1.1 This practice covers the procedures for immersion tests in sodium chloride + hydrogen peroxide solution. It is primarily for tests of wrought heat treatable aluminum alloys (2XXX and 7XXX) but may be used for other aluminum alloys, including castings. It sets forth the specimen preparation procedures and the environmental conditions of the test and the means for controlling them.1.2 This practice is intended for evaluations during alloy development and for evaluating production where it may serve as a control test on the quality of successive lots of the same material (see MIL-H-6088 and U.S. Federal Test Method Std. 151b). Therefore strict test conditions are stipulated for maximum assurance that variations in results are attributable to lot-to-lot differences in the material being tested.NOTE 1: This practice does not address sampling or interpretation or significance of results.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
162 条记录,每页 15 条,当前第 2 / 11 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页