微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Use of this guide is intended to provide information on the galvanic corrosion of metals in electrical contact in an electrolyte that does not have a flow velocity sufficient to cause erosion-corrosion or cavitation.3.2 This standard is presented as a guide for conducting galvanic corrosion tests in liquid electrolyte solutions, both in the laboratory and in service environments. Adherence to this guide will aid in avoiding some of the inherent difficulties in such testing.1.1 This guide covers conducting and evaluating galvanic corrosion tests to characterize the behavior of two dissimilar metals in electrical contact in an electrolyte under low-flow conditions. It can be adapted to wrought or cast metals and alloys.1.2 This guide covers the selection of materials, specimen preparation, test environment, method of exposure, and method for evaluating the results to characterize the behavior of galvanic couples in an electrolyte.NOTE 1: Additional information on galvanic corrosion testing and examples of the conduct and evaluation of galvanic corrosion tests in electrolytes are given in Refs (1)2 through (2).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 In general, wherever the possibility exists of water getting mixed with products/material (covered under 1.1) the results obtained by this test method will indicate the degree to which corrosion of iron components can be expected.5.2 Test also determines the antirust properties of products/material (covered under 1.1) in preparation for the various stages through which the tested product may pass prior to or during its transport through a pipeline.5.3 Test results are also meant to show whether or not the dosage levels and type of iron corrosion inhibitor added to a product/material (covered under 1.1) is sufficient for achieving the desired protection of affected assets such as storage tanks, process lines, and shipment systems.1.1 This test method covers an accelerated laboratory and field procedure for the determination of corrosion of iron, in the presence of water, on samples such as gasoline and gasoline blended with 10 % ethanol, E10 (Specification D4814); gasoline-blend components (except butane); diesel fuel and biodiesel B5, except Grade No. 4-D (Specification D975); biodiesel B6 to B20 (Specification D7467); diesel-blend component such as light cycle-oil; No. 1 fuel oil, No. 2 fuel oil (Specification D396); aviation turbine fuel (Specification D1655).1.2 The values stated in SI units are to be regarded as the standard.1.2.1 Exception—Values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers zinc and zinc alloy wire used to deposit zinc coatings by thermal spraying (metallizing) for the corrosion protection of steel and iron. Zinc and zinc alloy wire provided under this specification is intended for use in oxy-fuel and electric arc thermal spraying equipment. The zinc used to manufacture the wire shall conform to the requirements for high grade zinc (Z15001) or special high grade zinc (Z13001). The wire shall conform to the chemical requirements for aluminum, cadmium, copper, iron, lead, tin, antimony, silver, bismuth, arsenic, nickel, magnesium, molybdenum, titanium, and zinc. The wire shall be clean and free of corrosion, adhering foreign material, scale, seams, nicks, burrs, bends or kinks which would interfere with the operation of thermal spraying equipment. The wire shall uncoil readily and shall be a continuous length per spool, coil, or drum. Splices or welds are permitted, provided that they do not interfere with the thermal spray equipment or coating process.1.1 This specification covers zinc and zinc alloy wire used to deposit zinc coatings by thermal spraying (metallizing) for the corrosion protection of steel and iron. Zinc and zinc alloy wire provided under this specification is intended for use in oxy-fuel and electric arc thermal spraying equipment. Additional zinc alloy compositions used in thermal spraying primarily for electronic applications are found in Specification B943.1.2 Zinc alloy wire compositions used in thermal spraying primarily for electronic applications are found in Specification B943.1.3 Zinc alloy wire compositions used as solders are found in Specification B907.1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide covers test procedures for performing accelerated tests to evaluate relative corrosion resistance of various coatings applied to mechanical fasteners. Corrosion mechanisms such as general and crevice corrosion may be evaluated with this method. Test duration may be selected to achieve any desired level of corrosion exposure and provides a frame of reference to determine relative coating resistance to corrosion. Fasteners tightened to a desired tension and subjected to this test procedure may be evaluated to simulate a variety of service conditions. Without large amounts of accumulated field results, it is difficult to relate test duration or the number of test cycles to actual service life for a given application.1.1 This guide covers test procedures for performing accelerated tests to evaluate relative corrosion resistance of various coatings applied to mechanical fasteners. Corrosion mechanisms such as general and crevice corrosion may be evaluated with this method. Test duration may be selected to achieve any desired level of corrosion exposure and provides a frame of reference to determine relative coating resistance to corrosion. Fasteners tightened to a desired tension and subjected to this test procedure may be evaluated to simulate a variety of service conditions. Without large amounts of accumulated field results, it is difficult to relate test duration or the number of test cycles to actual service life for a given application.1.2 This standard is not intended to cover tests of driven fasteners such as nails, staples, screws and lag bolts.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Results from this accelerated corrosion test shall not be considered as an indicator of the useful life of the metal equipment. Many factors need consideration for applicability to specific circumstances. Refer to Guide C1696 and Practice G31 for additional information.5.2 Corrosion associated with insulation is an important concern for insulation manufacturers, specification writers, designers, contractors, users and operators of the equipment. Some material specifications contain test methods (or reference test methods contained in other material specifications), for use in evaluating the insulation with regard to the corrosion of steel, copper, and aluminum. In some cases these tests are not applicable or effective and have not been evaluated for precision and bias.5.3 A properly selected, installed, and maintained insulation system will reduce the corrosion that often occurs on an un-insulated structure. However, when the protective weather-resistant covering of an insulation system fails, the conditions for the aqueous environment necessary for corrosion under insulation (CUI) often develop. It is possible the insulation contains, collects, or concentrates corrosive agents, or a combination thereof, often found in industrial and coastal environments. If water is not present, these electrolytes cannot migrate to the metal surface. The electrochemical reaction resulting in the aqueous corrosion of metal surfaces cannot take place in the absence of water and electrolytes. Additional environmental factors contributing to increased corrosion rates are oxygen, and elevated-temperature (near boiling point).5.4 Chlorides and other corrosive ions are common to many environments. The primary corrosion preventative is to protect insulation and metal from contamination and moisture. Insulation covers, jackets, and metal coating of various kinds are often used to prevent water infiltration and contact with the metal.5.5 This procedure can be used to evaluate all types of thermal insulation and fireproofing materials (industrial, commercial, residential, cryogenic, fire-resistive, insulating cement) manufactured using inorganic or organic materials, faced or unfaced, for which a filtered extraction solution can be obtained.5.6 This procedure can be used with all metal types for which a coupon can be prepared such as mild steel, stainless steel, copper, or aluminum. Other metals (copper, aluminum) will need different times, reference solutions and cleaning practices. It shall not be interpreted that the steel procedures work for everything. When procedures are developed for other metals they will be balloted for inclusion in the document.5.7 This procedure can also be applicable to insulation accessories including jacketing, covers, adhesives, cements, and binders associated with insulation and insulation products.5.8 Heat treatment of the insulation (as recommended by the manufacturer up to the maximum potential exposure temperature) can be used to simulate possible conditions of use.5.9 Adhesives can be tested by first drying followed by water extraction or by applying a known quantity of the test adhesive to a test piece of insulation and then extracting.5.10 Insulating cements can be tested by casting a slab, drying, and extracting or by using the uncured insulating cement powder for extraction.5.11 Reference tests prepared with various concentrations of solutions that are conducive to the corrosion of the tested metal serve as comparative criteria. Solutions containing chloride, sodium hydroxide, various acids (sulfuric, hydrochloric, nitric, and citric acid), as well as “blank” tests using only de-ionized water and tap water are used.5.12 Research can be done on insulation that has been specially formulated to inhibit corrosion in the presence of corrosive ions through modifications in basic composition or incorporation of certain chemical additives. Corrosive ions can also be added to the insulation extraction solutions to determine the effectiveness of any inhibitors present.5.13 Protective surface treatments and coatings of different types and thickness can be applied to the metal coupons and compared using various corrosive liquids.5.14 Several sets of tests are recommended because of the number of factors that affect corrosion. An average of the tests and the standard deviation between the test results are used on the data. Much of the corrosion literature recommends a minimum of three specimens for every test. Consult Guide G16 for additional statistical methods to apply to the corrosion data.1.1 This practice covers procedures for a quantitative accelerated laboratory evaluation of the influence of extraction solutions containing ions leached from thermal insulation on the aqueous corrosion of metals. The primary intent of the practice is for use with thermal insulation and associated materials that contribute to, or alternatively inhibit, the aqueous corrosion of different types and grades of metals due to soluble ions that are leached by water from within the insulation. The quantitative evaluation criteria are Mass Loss Corrosion Rate (MLCR) expressed in mils per year determined from the weight loss due to corrosion of exposed metal coupons after they are cleaned.1.2 This practice cannot cover all possible field conditions that contribute to aqueous corrosion. The intent is to provide an accelerated means to obtain a non-subjective numeric value for judging the potential contribution to the corrosion of metals that can come from ions contained in thermal insulation materials or other experimental solutions. The calculated numeric value is the mass loss corrosion rate. This calculation is based on general corrosion spread equally over the test duration and the exposed area of the experimental cells created for the test. Corrosion found in field situations and this accelerated test also involves pitting and edge effects and the rate changes over time.1.3 The insulation extraction solutions prepared for use in the test can be altered by the addition of corrosive ions to the solutions to simulate contamination from an external source. Ions expected to provide corrosion inhibition can be added to investigate their inhibitory effect.1.4 Prepared laboratory ionic solutions are used as reference solutions and controls, to provide a means of calibration and comparison.21.5 Other liquids can be tested for their potential corrosiveness including cooling tower water, boiler feed, and chemical stocks. Added chemical inhibitors or protective coatings applied to the metal can also be evaluated using the general guidelines of the practice.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant. These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.1.1 This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant.1.2 These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.NOTE 1: If used, phosphate to be used in accordance with Specification F1137, grade 0.1.3 Units—The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This guide covers procedures for crevice-corrosion testing of iron-base and nickel-base stainless alloys in seawater. The guidance provided may also be applicable to crevice corrosion testing in other chloride containing natural waters and various laboratory prepared aqueous chloride environments.4.1.1 While this guide focuses on testing of iron-base and nickel-base stainless alloys, the procedures and evaluations methods described herein have been successfully applied to characterize the crevice corrosion performance of other alloy systems (see, for example, Aylor et al.3).NOTE 1: In the case of copper alloys, the occurrence of crevice-related corrosion associated with different corrosion mechanisms takes place immediately adjacent to the crevice former rather than within the occlusion.4.2 This guide describes the use of a variety of crevice formers including the nonmetallic, segmented washer design referred to as the multiple crevice assembly (MCA) as described in 9.2.2.4.3 In-service performance data provide the most reliable determination of whether a material would be satisfactory for a particular end use. Translation of laboratory data from a single test program to predict service performance under a variety of conditions should be avoided. Terms, such as immunity, superior resistance, etc., provide only a general and relatively qualitative description of an alloy's corrosion performance. The limitations of such terms in describing resistance to crevice corrosion should be recognized.4.4 While the guidance provided is generally for the purpose of evaluating sheet and plate materials, it is also applicable for crevice-corrosion testing of other product forms, such as tubing and bars.4.5 The presence or absence of crevice corrosion under one set of conditions is no guarantee that it will or will not occur under other conditions. Because of the many interrelated metallurgical, environmental, and geometric factors known to affect crevice corrosion, results from any given test may or may not be indicative of actual performance in service applications where the conditions may be different from those of the test.1.1 This guide covers information for conducting crevice-corrosion tests and identifies factors that may affect results and influence conclusions.1.2 These procedures can be used to identify conditions most likely to result in crevice corrosion and provide a basis for assessing the relative resistance of various alloys to crevice corrosion under certain specified conditions.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific warning statement, see 7.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 When two dissimilar metals in electrical contact are exposed to a common electrolyte, one of the metals can undergo increased corrosion while the other can show decreased corrosion. This type of accelerated corrosion is referred to as galvanic corrosion. Because galvanic corrosion can occur at a high rate, it is important that a means be available to alert the user of products or equipment that involve the use of dissimilar metal combinations in an electrolyte of the possible effects of galvanic corrosion.4.2 One method that is used to predict the effects of galvanic corrosion is to develop a galvanic series by arranging a list of the materials of interest in order of observed corrosion potentials in the environment and conditions of interest. The metal that will suffer increased corrosion in a galvanic couple in that environment can then be predicted from the relative position of the two metals in the series.4.3 Types of Galvanic Series: 4.3.1 One type of Galvanic Series lists the metals of interest in order of their corrosion potentials, starting with the most active (electronegative) and proceeding in order to the most noble (electropositive). The potentials themselves (versus an appropriate reference half-cell) are listed so that the potential difference between metals in the series can be determined. This type of Galvanic Series has been put in graphical form as a series of bars displaying the range of potentials exhibited by the metal listed opposite each bar. Such a series is illustrated in Fig. 1.4.4 Use of a Galvanic Series: 4.4.1 Generally, upon coupling two metals in the Galvanic Series, the more active (electronegative) metal will have a tendency to undergo increased corrosion while the more noble (electropositive) metal will have a tendency to undergo reduced corrosion.4.4.2 Usually, the further apart two metals are in the series, and thus the greater the potential difference between them, the greater is the driving force for galvanic corrosion. All other factors being equal, and subject to the precautions in Section 5, this increased driving force frequently, although not always, results in a greater degree of galvanic corrosion.1.1 This guide covers the development of a galvanic series and its subsequent use as a method of predicting the effect that one metal can have upon another metal can when they are in electrical contact while immersed in an electrolyte. Suggestions for avoiding known pitfalls are included.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

At this time none of these practices have been demonstrated to correlate with field service. Because these procedures do not restrict the selection of either the containment material or the fluid for testing, it is essential that consideration be given to the appropriate pairing of metal and fluid. Likewise, knowledge of the corrosion protection mechanism and the probable mode of failure of a particular metal is helpful in the selection of test conditions and the observation, interpretation, and reporting of test results. It is important that consideration be given to each of the permitted variables in test procedure so that the results will be meaningfully related to field performance. It is especially important that the time of testing selected be adequate to correctly measure the rate of corrosion of the containment material. Note 1—Corrosion, whether general or localized, is a time-dependent phenomenon. This time dependence can show substantial nonlinearity. For example, formation of a protective oxide will diminish corrosion with time, while certain forms of localized attack accelerate corrosion with time. The minimum time required for a test to provide a corrosion rate that can be extrapolated for the prediction of long-term performance varies widely, depending on the selection of metal and fluid, and on the form of corrosion attack. Therefore, it is not possible to establish a single minimum length of test applicable to all materials and conditions. However, it is recommended that for the tests described in these practices, a test period of no less than 6 months be used. Furthermore, it is recommended that the effect of time of testing be evaluated to detect any significant time dependence of corrosion attack. It is essential for the meaningful application of these procedures that the length of test be adequate to detect changes in the nature of the fluid that might significantly alter the corrosivity of the fluid. For example, exhaustion of chemical inhibitor or chemical breakdown of the fluid may occur after periods of months in selected cycles of operation. Note 2—Many fluids that may be considered for solar applications contain additives to minimize the corrosivity of the fluid. Many such additives are useful only within a specific concentration range, and some additives may actually accelerate corrosion if the concentration falls below a critical level. Depletion kinetics can be a strong function of the exposed metal surface area. Therefore, for tests involving fluids with such additives, consideration must be given to the ratio of metal surface area to fluid volume as it may relate to an operating system.1.1 These practices cover test procedures simulating field service for evaluating the performance under corrosive conditions of metallic containment materials in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. 1.2 These practices describe test procedures used to evaluate the resistance to deterioration of metallic containment materials in the several conditions that may occur in operation of solar heating and cooling systems. These conditions include: (1) operating full flow; (2) stagnant empty vented; (3) stagnant, closed to atmosphere, non-draindown; and (4) stagnant, closed to atmosphere, draindown. 1.3 The recommended practices cover the following three tests: 1.3.1 Practice A—Laboratory Exposure Test for Coupon Specimens. 1.3.2 Practice B—Laboratory Exposure Test of Components or Subcomponents. 1.3.3 Practice C—Field Exposure Test of Components or Subcomponents. 1.4 Practice A provides a laboratory simulation of various operating conditions of solar heating and cooling systems. It utilizes coupon test specimens and does not provide for heating of the fluid by the containment material. Practice B provides a laboratory simulation of various operating conditions of a solar heating and cooling system utilizing a component or a simulated subcomponent construction, and does provide for heating of the fluid by the containment material. Practice C provides a field simulation of various operating conditions of solar heating and cooling systems utilizing a component or a simulated subcomponent construction. It utilizes controlled schedules of operation in a field test. 1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific safety precaution statement see Section 6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers alloy steels having a chromium content equal to or less than 11.0% in plate, sheet, strip form for corrosion, and heat-resisting applications. Some steels, especially the high silicon containing steels, because of their particular alloy content and specialized properties, may require special care in their fabrication and welding. The steel shall conform to the requirements as to chemical composition. The mechanical properties such as tensile strength, yield strength, elongation and hardness shall be determined.1.1 This specification covers alloy steels having a chromium content equal to or less than 11.0 % in plate, sheet, strip form for corrosion, and heat-resisting applications.1.2 Some steels covered by this specification, especially the high silicon containing steels, because of their particular alloy content and specialized properties, may require special care in their fabrication and welding. Specific procedures are of fundamental importance, and it is presupposed that all parameters will be in accordance with approved methods capable of producing the desired properties in the finished fabrication.1.3 The values stated in inch-pound units or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.4 This specification and the applicable material specifications are expressed in both inch-pound and SI units. However, unless the order specifies the applicable "M" specification designation (SI units), the material shall be furnished in inch-pound units.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is suitable for setting specifications, for use as an internal quality control tool, and for use in development or research work on industrial aromatic hydrocarbons and related materials. It also gives an indication of the presence of certain corrosive substances which may corrode equipment, such as acidic compounds or sulfur compounds.1.1 This test method covers the corrosiveness of industrial aromatic hydrocarbons to a copper strip.NOTE 1: For a similar copper strip test applicable to other petroleum products, see Test Method D130 and Test Method D1838.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 This practice provides a methodology for measuring the duration of wetness on a sensing element mounted on a surface in a location of interest. Experience has shown that the sensing element reacts to factors that cause wetness in the same manner as the surface on which it is mounted.3.2 Surface moisture plays a critical role in the corrosion of metals and the deterioration of nonmetallics. The deposition of moisture on a surface can be caused by atmospheric or climatic phenomena such as direct precipitation of rain or snow, condensation, the deliquescence (or at least the hygroscopic nature) of corrosion products or salt deposits on the surface, and others. A measure of atmospheric or climatic factors responsible for moisture deposition does not necessarily give an accurate indication of the TOW. For example, the surface temperature of an object may be above or below both the ambient and the dew point temperatures. As a result condensation will occur without an ambient meteorological indication that a surface has been subjected to a condensation cycle.3.3 Structural design factors and orientation can be responsible for temperature differences and the consequent effect on TOW as discussed in 4.2. As a result, some surfaces may be shielded from rain or snow fall; drainage may be facilitated or prevented from given areas, and so forth. Therefore various components of a structure can be expected to perform differently depending on mass, orientation, air flow patterns, and so forth. A knowledge of TOW at different points on large structures can be useful in the interpretation of corrosion or other testing results.3.4 In order to improve comparison of data obtained from test locations separated on a macrogeographical basis, a uniform orientation of sensor elements boldly exposed in the direction of the prevailing wind, at an angle of 30° above the horizontal is recommended. Elevation of the sensor above ground level should be recorded.3.5 Although this method does not develop relationships between TOW and levels of ambient relative humidity (RH), long term studies have been carried out to show that the TOW experienced annually by panels exposed under standard conditions is equivalent to the cumulative time the RH is above a given threshold value.2 This time value varies with location and with other factors. Probability curves have been developed for top and bottom surfaces of a standard panel at one location which show the probable times that a surface will be wet as a percentage of the cumulative time the relative humidity is at specific levels.3 If needed, it should be possible to develop similar relationships to deal with other exposure conditions.1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture.1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus.1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers cylindrical tanks fabricated by contact molding for above-ground vertical installation, to contain aggressive chemicals at essentially atmospheric pressure, and made of a commercial-grade polyester or vinyl ester, resin. This specification does not cover the design of vessels intended for pressure above hydrostatic, vacuum conditions, except as classified herein, or vessels intended for use with liquids heated above their flash points. The tanks are classified as type I and II according to the operating pressure or vacuum levels, and the safety factor required for external pressure. The tanks are further classified as grade 1 and 2 according to the generic types of thermoset resin. The resin used shall be a commercial grade, corrosion-resistant thermoset. The reinforcement should be a chopped-strand mat, a nonwoven biaxial or unidirectal fabric, a woven roving, or a surface mat. Materials shall be tested and the individual grades shall conform to specified values of design requirements such as straight shell, external pressure, top head, bottom head, open-top tanks, joints, fittings, hold-down lugs, and lifting lugs; laminate construction requirements such as structural tank, joints, and fittings and accessories; and other requirements such as physical properties, chemical resistance of resin, glass content, tensile strength, flexural properties and degree of cure. The dimensions and tolerances, as well as the workmanship, finish and appearance are also detailed.1.1 This specification covers cylindrical tanks fabricated by contact molding for above-ground vertical installation, to contain aggressive chemicals at atmospheric pressure, and made of a commercial-grade polyester or vinyl ester, resin. Included are requirements for materials, properties, design, construction, dimensions, tolerances, workmanship, and appearance.1.2 This specification does not cover the design of vessels intended for pressure above atmospheric or under vacuum conditions, except as classified herein, or vessels intended for use with liquids heated above their flash points.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are provided for information purposes only.1.4 Special design consideration shall be given to tanks subject to environmental and/or mechanical forces such seismic, wind, ice, agitation, or fluid dynamic forces, to operational service temperatures greater than 180°F (82°C) and to tanks with unsupported bottoms.1.5 The following safety hazards caveat pertains only to the test method portion, Section 11, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is suitable for in-service evaluation and for use in research and development work.4.2 This test method is applicable to members regardless of their size or the depth of concrete cover over the reinforcing steel. Concrete cover in excess of 75 mm (3 in.) can result in an averaging of adjacent reinforcement corrosion potentials that can result in a loss of the ability to discriminate variation in relative corrosion activity.4.3 This test method is not applicable to reinforced concrete structures with epoxy-coated reinforcement.4.4 This test method is not applicable to reinforced concrete structures in which waterproofing membranes are located between the reinforcement cage and the concrete surface as they can prevent the conduction of electricity and result in erroneous readings.4.5 This test method may be used at any time during the life of a concrete member after the concrete has set, although it is generally most useful for evaluating mature reinforced concrete that is suspected to be susceptible to corrosion.4.6 The results obtained by the use of this test method shall not be considered as a means for estimating the structural properties of the steel or of the reinforced concrete member.4.7 Temperature and humidity can impact potential readings. This is particularly important for periodic testing of the same test location. An increase in the temperature leads to increasing ionic mobility, which in turn affects the reference electrode’s potential. The temperature influence can be neglected if the measurements are taken within the range of 22.2 °C ± 5.5 °C (72 °F ± 10 °F). Otherwise, the temperature-dependency of the measurements must be taken into account.4.8 The potential measurements should be interpreted by engineers or technical specialists experienced in the fields of concrete materials and corrosion testing. It is often necessary to use other complementary data such as chloride contents, depth of carbonation, delamination survey, rate of corrosion, and environmental exposure conditions, in addition to corrosion potential measurements, to formulate conclusions concerning corrosion activity of embedded steel and its probable effect on the service life of a structure.1.1 This test method covers the estimation of the electrical corrosion potential of uncoated reinforcing steel in field and laboratory concrete, for the purpose of determining the corrosion activity of the reinforcing steel.1.2 This test method is limited by electrical circuitry. Concrete surface in building interiors and desert environments lose sufficient moisture so that the concrete resistivity becomes so high that special testing techniques not covered in this test method may be required (see 5.1.4.1). Concrete surfaces that are coated or treated with sealers may not provide an acceptable electrical circuit. The basic configuration of the electrical circuit is shown in Fig. 1.FIG. 1 Reference Electrode Circuitry1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test is designed to be used as a rapid measure of the overall relative corrosivity of Ethanol Fuel Blends (Specification D5798) and Denatured Fuel Ethanol (Specification D4806) to iron (steel).5.2 The test can be used to compare corrosion inhibitor dosage levels and effectiveness of various corrosion inhibitors as they pertain to protecting iron (steel) materials from corrosion.1.1 This test method measures the ability of inhibited and uninhibited Ethanol Fuel Blends defined by Specification D5798 and Denatured Fuel Ethanol defined by Specification D4806 to resist corrosion of iron should water become mixed with the fuel, using an accelerated laboratory test method. Corrosion ratings are reported based on a visual, numbered rating scale.1.2 The values stated in SI units are to be regarded as standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Sections 7 and 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
162 条记录,每页 15 条,当前第 1 / 11 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页