微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Fireclay steel-teeming nozzles and sleeves are classified by volume reheat change. Bloating of some refractories results in irregular reheat dimensions, which are difficult to measure. This practice determines the volume without depending upon physical linear measurements.3.2 Blast furnace checkers that have irregular cross-sections are classified by “creep properties.” This practice determines the average cross-sectional area.1.1 This practice covers the methods of calculating areas, volumes, and linear changes of irregularly shaped refractory specimens.1.2 The specimens must have a constant cross-sectional area over a length (L).1.3 The values stated in SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Performance verification or calibration is essential to the accurate determination of quantitative dimension change measurements.5.2 This test method may be used for instrument performance validation, regulatory compliance, research and development and quality assurance purposes.1.1 This test method describes calibration of the length change (deflection) measurement or thermal expansion of thermomechanical analyzers (TMAs) within the temperature range from –150 °C to 1000 °C using the thermal expansion of a suitable reference material.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Materials used in building envelopes to enhance energy efficiency, including PCM products used for thermal insulation, thermal control, and thermal storage, are subjected to transient thermal environments, including transient or cyclic boundary temperature conditions. This test method is intended to enable meaningful PCM product classification, as steady-state thermal conductivity alone is not sufficient to characterize PCMs.NOTE 3: This test method defines a dynamic test protocol for complex products or composites containing PCMs. Due to the macroscopic structure of these products or composites, conventional measurements using a Differential Scanning Calorimeter (DSC) as specified in E793 and E967, which use very small specimens, are not necessarily representative of the relationship between temperature and enthalpy of full-scale PCM products due to the specimen size limitation.5.2 Dynamic measurements of the thermal performance of PCM products shall only be performed by qualified personnel with understanding of heat transfer and error propagation. Familiarity with the configuration of both the apparatus and the product is necessary.5.3 This test method focuses on testing PCM products used in engineering applications, including in building envelopes to enhance the thermal performance of insulation systems.5.3.1 Applications of PCM in building envelopes take multiple forms, including: dispersed in, or otherwise combined with, a thermal insulation material; a separate object implemented in the building envelope as boards or membranes containing concentrated PCM that operates in conjunction with a thermal insulation material. Both of these forms enhance the performance of the structure when exposed to dynamic, that is, fluctuating, boundary temperature conditions.5.3.2 PCMs can be studied in a variety of forms: as the original “pure” PCM; as a composite containing PCM and other embedded materials to enhance thermal performance; as a product containing PCM or composite (such as micro- or macro-encapsulated PCM); or as a system, comprising arrays or assemblies of PCM products.5.4 This test method describes a method of using a heat flow meter apparatus to determine key properties of PCM products, which are listed below. Engineers, architects, modelers, and others require these properties to accurately predict the in-situ performance of the products (2).5.5 The objective is generally to conduct a test under temperature conditions that will induce a phase transition (for example, melting or freezing) in the PCM product during the course of the test.5.6 Determination of thermal storage properties is the objective of this test method, and key properties of interest include the following:5.6.1 PCM Active Range, that is the temperature interval over which the phase transitions occur, for both melting and freezing of the PCM product or composites containing PCMs.5.6.2 Specific heat of the fully melted and fully frozen product, defined outside the PCM Active Range.5.6.3 Enthalpy as a function of temperature, h(T).5.6.4 Enthalpy plot—a histogram or table that indicates the change in enthalpy associated with incremental temperature changes that span the tested temperature range.5.6.5 Enthalpy changes associated with phase transitions during the PCM melting and freezing processes in materials and composites containing PCMs.5.7 PCM products often possess characteristics that complicate measurement and analysis of phase transitions during a test. Following are some of the known issues with PCMs:5.7.1 Imprecise PCM Active Range—PCMs in general do not have precise melting or freezing temperatures, and the entire active temperature range, from the beginning to the end of phase transitions, must be determined.NOTE 4: The onset of freezing will not necessarily coincide with the end of melting. Therefore, the freeze and melt enthalpy curves must be independently defined to determine the PCM Active Range.5.7.2 Multiple Phase Transitions—Many PCMs exhibit a solid-solid transition with significant latent heat effects at temperatures near the melting transition.5.7.3 Sub-cooling—Occurs when the specimen cools below its nominal freezing temperature before it actually begins to freeze, thus exhibiting an unusual enthalpy-temperature curve. Solid-liquid and solid-solid phase changes are often dependent on heating and cooling rate.5.7.4 Hysteresis—Occurs when a specimen heated from one temperature to another, and then returned to the original temperature, absorbs more (or less) heat at any particular temperature during the heating stage than it releases during cooling.5.8 The properties measured are determined by fundamental thermophysical properties of the constituent materials of the product, and are thus inherent to the PCM product. The desired thermal performance enhancement, however, will depend strongly on the particular environment, climate, and mode of the actual engineering application of the PCM.1.1 This test method covers the measurement of non-steady-state heat flow into or out of a flat slab specimen to determine the stored energy (that is, enthalpy) change as a function of temperature using a heat flow meter apparatus (HFMA).1.2 In particular, this test method is intended to measure the sensible and latent heat storage capacity for products incorporating phase-change materials (PCM).1.2.1 The storage capacity of a PCM is well defined via four parameters: specific heats of both solid and liquid phases, phase change temperature(s) and phase change enthalpy (1).21.3 To more accurately predict thermal performance, information about the PCM products’ performance under dynamic conditions is needed to supplement the properties (thermal conductivity) measured under steady-state conditions.NOTE 1: This test method defines a dynamic test protocol for products or composites containing PCMs. Due to the macroscopic structure of these products or composites, small specimen sizes used in conventional Differential Scanning Calorimeter (DSC) measurements, as specified in E793 and E967, are not necessarily representative of the relationship between temperature and enthalpy of full-scale PCM products.1.4 This test method is based upon the HFMA technology used for Test Method C518 but includes modifications for specific heat and enthalpy change measurements for PCM products as outlined in this test method.1.5 Heat flow measurements are required at both the top and bottom HFMA plates for this test method. Therefore, this test method applies only to HFMAs that are equipped with at least one heat flux transducer on each of the two plates and that have the capability for computerized data acquisition and temperature control systems. Further, the amount of energy flowing through the transducers must be measureable at all points in time. Therefore, the transducer output shall never be saturated during a test.1.6 This test method makes a series of measurements to determine the thermal energy storage of a test specimen over a temperature range. First, both HFMA plates are held at the same constant temperature until steady state is achieved. Steady state is defined by the reduction in the amount of energy entering the specimen from both plates to a very small and nearly constant value. Next, both plate temperatures are changed by identical amounts and held at the new temperature until steady state is again achieved. The energy absorbed or released by the specimen from the time of the temperature change until steady state is again achieved will be recorded. Using a series of temperature step changes, the cumulative enthalpy stored or released over a certain temperature range is determined.1.6.1 The specific heats of the solid and liquid phases are determined from the slope of the temperature-dependant enthalpy function during sensible heating/cooling, before and after the phase change process.1.7 Calibration of the HFMA to determine the ‘correction factors’ for the energy stored within the plate heat flux transducers and any material placed between the test specimen and the HFMA plates must be performed following Annex A1. These correction factors are functions of the beginning and ending temperatures for each step, as described in Annex A1.1.8 This test method applies to PCMs and composites, products and systems incorporating PCMs, including those with PCM dispersed in or combined with a thermal insulation material, boards or membranes containing concentrated or dispersed PCM, etc. Specific examples include solid PCM composites and products, loose blended materials incorporating PCMs, and discretely contained PCM.1.9 This test method may be used to characterize material properties, which may or may not be representative of actual conditions of use.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The test data obtained with this test method may be used to compare the performance of various tires for the conditions under which they were tested.5.2 This test method is suitable for a variety of quality assurance, research, and development purposes, when tires are to be compared during a single series of tests. The procedure described may not be suitable for regulatory statutes or specification acceptance because the values obtained may not agree, or correlate either in rank order or absolute tread wear performance level, with values obtained on other road surfaces, or on the same surface after additional wear, under other environmental conditions, on other test vehicles, or with results obtained by other test procedures.1.1 This test method covers a procedure to be used to obtain data for determining the changes in tire tread depth over any specified course and test period.1.2 The tire tread depth loss data obtained according to the procedures for this test method may be used to calculate tire tread wear by way of the procedures described in Practice F1016.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers reusable phase-change-type clinical thermometers.1.2 The following safety hazards caveat pertains only to the test method portion, Section 6, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

6.1 The assumptions of the physical system are given as follows:6.1.1 The aquifer is of uniform thickness, with impermeable upper and lower confining boundaries.6.1.2 The aquifer is of constant homogeneous porosity and matrix compressibility and constant homogeneous and isotropic hydraulic conductivity.6.1.3 The origin of the cylindrical coordinate system is taken to be on the well-bore axis at the top of the aquifer.6.1.4 The aquifer is fully screened.6.1.5 The well is 100 % efficient, that is, the skin factor, f, and dimensionless skin factor, σ, are zero.6.2 The assumptions made in defining the momentum balance are as follows:6.2.1 The average water velocity in the well is approximately constant over the well-bore section.6.2.2 Frictional head losses from flow in the well are negligible.6.2.3 Flow through the well screen is uniformly distributed over the entire aquifer thickness.6.2.4 Change in momentum from the water velocity changing from radial flow through the screen to vertical flow in the well are negligible.NOTE 1: Slug and pumping tests implicitly assume a porous medium. Fractured rock and carbonate settings may not provide meaningful data and information.NOTE 2: The function of wells in any unconfined setting in a fractured terrain might make the determination of k problematic because the wells might only intersect tributary or subsidiary channels or conduits. The problems determining the k of a channel or conduit notwithstanding, the partial penetration of tributary channels may make a determination of a meaningful number difficult. If plots of k in carbonates and other fractured settings are made and compared, they may show no indication that there are conduits or channels present, except when with the lowest probability one maybe intersected by a borehole and can be verified, such problems are described by (5) Smart (1999). Additional guidance can be found in Guide D5717.NOTE 3: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice covers determination of transmissivity from the measurement of water-level response to a sudden change of water level in a well-aquifer system characterized as being critically damped or in the transition range from underdamped to overdamped. Underdamped response is characterized by oscillatory changes in water level; overdamped response is characterized by return of the water level to the initial static level in an approximately exponential manner. Overdamped response is covered in Guide D4043; underdamped response is covered in Practice D5785/D5785M, Guide D4043.1.2 The analytical procedure in this practice is used in conjunction with Guide D4043 and the field procedure in Test Method D4044/D4044M for collection of test data.1.3 Limitations—Slug tests are considered to provide an estimate of the transmissivity of an aquifer near the well screen. The method is applicable for systems in which the damping parameter, ζ, is within the range from 0.2 through 5.0. The assumptions of the method prescribe a fully penetrating well (a well open through the full thickness of the aquifer) in a confined, nonleaky aquifer.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of results in units other than SI shall not be regarded as nonconformance with this standard.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of the practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without the consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through he ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method gives the rubber technologist two means to evaluate the effect of liquids on rubber vulcanizates or rubbery materials. Volatile, nonvolatile, and other liquids that require pressure to maintain a liquid state may be used. Data obtained on rubbery materials exposed to liquids by this method may be used to predict their behavior in applications involving similar exposure. These changes in length have been found to be useful for specifications but do not necessarily indicate changes for design purposes.1.1 This test method covers a technique to measure the effect of immersion liquids on rubber vulcanizates or rubbery materials. Change in specimen geometry and dimensions are observed through the transparent walls of the tube containing the specimen immersed in the liquid. Although it may be employed with any liquid, it is especially applicable to liquids that are so volatile that they must be maintained under pressure during the period of immersion.1.2 This test method differs from Test Method D471 in that volume changes are approximated from observed dimensional changes rather than being calculated directly.1.3 The values stated in SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 This test method is useful in quantitatively rating or ranking both ramming and refractory plastics by their linear stability after heating.3.2 This test method is also useful for determining whether a ramming or refractory plastic can be used in a specified application based on linear change criteria.3.3 This test method excludes basic and carbon-bearing materials.3.4 This test method can produce data for the engineering and design of refractory installations. The linear change data can be used to determine the number of joints necessary to maintain integrity of ramming or refractory plastic in a large installation.1.1 This test method covers the determination of the drying shrinkage and of the combined drying and linear change of refractory ramming mixes and plastics.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Uses—This guide is intended for use on a voluntary basis by a reporting entity that provides disclosure in its financial statements regarding financial impacts attributed to climate change. The degree and type of disclosure depends on the scope and objective of the financial statements. This guide is intended to apply to U.S. and international operations at the discretion of the reporting entity.8 The user should be aware that there may be contractual obligations, court decisions, or regulatory directives that may affect the flexibility in use of this guide. The user should also maintain an awareness of international regulations that may be relevant to disclosures, such as those of the International Accounting Standards Board and International Financial Reporting Standards.4.2 Principle: 4.2.1 The following principles are an integral part of this guide and are intended to be referred to in resolving any ambiguity or dispute regarding the interpretation of financial disclosures regarding financial impacts attributed to climate change.4.2.1.1 Uncertainty Not Eliminated—Although a reporting entity, as of the time when its financial statements are prepared, may have evaluated the existence and extent of financial impacts attributed to climate change, there remains uncertainty with regard to the final resolution of scientific, technological, regulatory, legislative, and judicial matters, which could affect its financial impacts attributed to climate change. Where, as defined by the reporting entity, such uncertainties cannot be eliminated, the reporting entity shall provide its justification. In addition, the reporting entity shall provide estimates of the risks involved regarding uncertainties. Typically, this is accomplished through the development of reasonable scenarios or ranges to recognize and address uncertainties. While one or more climate change uncertainties may be unforeseeable for any reporting period, once recognized, subsequent reports will include any previous material exclusions. Further, a discovery of significant impediment to the reporting entities stakeholders, as and when discovered by the reporting entity, may require an interim statement.4.2.1.2 Comparison with Subsequent Disclosures—Subsequent disclosures that convey different information regarding the extent or magnitude of the reporting entity's financial impacts attributed to climate change should not be construed as indicating the initial disclosures were inappropriate. Disclosures shall be evaluated on the reasonableness of judgments and inquiries made at the time and under the circumstances in which they were made. Subsequent disclosures should not be considered valid standards to judge the appropriateness of any prior disclosure based on hindsight, new information, use of developing analytical techniques, or other factors. However, information on trends between disclosure years may be of value to a user of financial statements.4.2.1.3 Not Exhaustive—Appropriate disclosure does not necessarily mean an exhaustive disclosure. There is a point at which the cost of obtaining information or the time required to gather it outweighs the usefulness of the information and, in fact, may be a material detriment to the orderly preparation of financial statements and the ability of readers to understand the information contained therein. However, all relevant and reasonably ascertainable information should be used to determine the content of appropriate financial impacts attributed to climate change.1.1 Purpose—The purpose of this guide is to provide a series of options or instructions consistent with good commercial and customary practice for climate change-related disclosures accompanying audited and unaudited financial statements. This guide encourages consistent and comprehensive disclosure of financial impacts attributed to climate change.1.2 Objective—The objective of this guide is to determine the conditions warranting disclosure and the content of appropriate disclosure.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Resilient floor covering is made by fusing polymer materials under heat or pressure, or both, in various manufacturing and decorating processes. The polymer material may be compounded with plasticizers, stabilizers, fillers, and other ingredients for processability and product performance characteristics. The formulation of the compound can be varied considerably depending on the desired performance characteristics and methods of processing. See Practice D794 for additional significance and use information.3.1.1 Heat stability, which is resistance to discoloration from heat, is a basic requirement for processing and functional use.3.1.2 This test method provides a means of measuring the amount of color change in flooring products when subjected to elevated temperatures over a period of time (functional use of the flooring product).3.2 This test method is not intended to be a means of predicting the amount of color change that occurs during processing (manufacture).3.3 This test method specifies that a sample is subjected to 158°F ± 2°F (70°C ± 1°C) for 7 days, and the color difference is measured by a spectrophotometer and expressed as ΔE* units.NOTE 1: It is the intent that this test method be used for testing heat stability performance properties to be referenced in resilient flooring specifications.1.1 This test method covers a procedure for determining the resistance of resilient floor covering to color change from exposure to elevated temperature over a specified period of time.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Resilient floor covering is made by fusing polymer materials under heat or pressure, or both, in various manufacturing and decorating processes. The polymer material may be compounded with plasticizers, stabilizers, fillers, and other ingredients for processability and product performance characteristics. The formulation of the compound can be varied considerably depending on the desired performance characteristics and methods of processing.4.2 Light stability, which is resistance to discoloration from light, is a basic requirement for functional use.4.3 This test method provides a means of measuring the amount of color change in flooring products when subjected to accelerated light exposure over a period of time (functional use of the flooring product).4.4 This test method specifies that a sample is measured by a spectrophotometer and expressed in ΔE* units before and after accelerated light exposure.NOTE 2: It is the intent that this test method be used for testing light stability performance properties to be referenced in resilient flooring specifications.1.1 This test method covers a procedure for determining the resistance of resilient floor covering to color change from exposure to light over a specified period of time.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 The change in resistance with temperature for heating element materials is a major design factor and may influence material selection. The measurement of this change is essential to ensure that heating elements perform as designed. This test method was designed to minimize the effect different manufacturing processes have on resistance change, thereby yielding results that are reproducible.1.1 This test method covers the determination of the change of resistance with temperature of metallic materials for electrical heating, and is applicable over the range of service temperatures.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Rolled erosion control products are intended to protect seed beds from erosion and provide an environment that encourages seed germination. Maintaining a moist environment by gradually releasing absorbed moisture helps provide a beneficial growth environment. The ability of a product to absorb moisture is commonly specified. This test method can be used for quality control and to determine product conformance to a specification.5.2 Change in mass of RECPs submerged in water may be used to control the quality of many RECPs. Change in mass of RECPs submerged in water has not been proven to relate to field performance for all materials.5.3 The change in mass of RECPs submerged in water may vary considerably depending on the composition of the materials used in the product or due to inconsistency within the product. This test method enables the characterization and control of product consistency.5.4 This test method may be used to determine the effect of different component materials and makeup of RECPs on the change in mass when submerged in water.5.5 This test method may be used for acceptance testing of commercial shipments of RECPs. Comparative tests as directed in 5.6 may be advisable.5.6 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier shall conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the evaluation of bias. As a minimum, the two parties shall take a group of test specimens that are as homogeneous as possible and that are formed from a lot of material of the type in question. The test specimens shall be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories shall be compared using Student’s t-test for unpaired date and an acceptable probability level chosen by the two begun. If bias is found, either its cause must be corrected, or the purchaser and supplier must agree upon the known bias.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method measures the change in mass of a rolled erosion control product when specimens are submerged in water for a prescribed period of time. The change in mass is reported as a percentage of the original dry mass of the specimen.1.2 Units—The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.2.1 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This practice implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit of mass. However, the use of balances and scales recording pounds of mass (lbf) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.3.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The findings generated by this test method shall be part of the approval of maintenance chemicals to be used on, or to come in contact with, airplane interior surfaces during routine operations. The test method screens these chemicals to ensure that no discoloration or staining or both is liable to occur by use of the liquid chemical product.1.1 This test method covers the determination of color change and staining from liquid solutions, such as cleaning or disinfecting chemicals or both, on painted metallic surfaces and nonmetallic surfaces of materials being used inside the aircraft cabin. The effects upon the exposed specimens are measured with the AATCC Gray Scale for Color Change and AATCC Gray Color Scale for Staining.NOTE 1: This test method is applicable to any colored nonmetallic hard surface in contact with liquids. The selected test specimens are chosen because these materials are present in the majority of aircraft cabin interiors.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 This test method provides a means of assessing the sulfate resistance of mortars made using portland cement, blends of portland cement with pozzolans or slags, and blended hydraulic cements. Test Method C452 is suitable for evaluating portland cements but not blended cements or blends of portland cement with pozzolans or slags.3.2 The standard exposure solution used in this test method, unless otherwise directed, contains 352 moles of Na2SO4 per m3 (50 g/L). Other sulfate concentrations or other sulfates such as MgSO4 may be used to simulate the environmental exposure of interest. Further discussion of these and other technical issues is given in the Appendix.1.1 This test method covers the determination of length change of mortar bars immersed in a sulfate solution. Mortar bars made using mortar described in Test Method C109/C109M are cured until they attain a compressive strength of 20.0 ± 1.0 MPa [3000 ± 150 psi], as measured using cubes made of the same mortar, before the bars are immersed.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the inch-pound units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
43 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页