微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This guide provides recommendations for recording walkway surface investigation, evaluation, and incident report data pertaining to slips, trips, stumbles, and falls. It is intended to aid individuals or entities in the development of their own special reporting system. It is recognized that a user may use this guide in its entirety or may extract only those segments providing the level of information recommended. Depending on the intended use, a report form may be designed to be used alone or as a supplement to or incorporated within another report form. This guide is not a final report form. It lists items that may be considered for inclusion into a questionnaire, document, or report.4.2 Potential users include persons interested in the prevention and investigation of slip, trip, stumble, and fall phenomena, such as insurance company loss control specialists, industrial and commercial safety professionals, plant and facilities management personnel, forensic engineers, and research personnel concerned with factor correlation, statistics acquisition, loss control, and cost control.4.3 This guide provides uniform language appropriate for creating a form for manually recording information regarding pedestrian walkway evaluations and slip, trip, and fall incidents.4.4 Recommendations for Reporting—Information specific to site location and case identification is given in 6.2; information specific to walkway evaluation is given in 6.3; information specific to slip, trip, and fall incidents is given in 6.4.1.1 This guide provides a listing of items that may be useful in recording and evaluating the conditions of a walkway surface, including ramps and stairs, that may involve a slip, stumble, or trip that may result in a fall.1.2 This guide provides a listing of data that may be useful in investigating, evaluating, and reporting a slip, stumble, trip, slip and fall, stumble and fall, or trip and fall incident.1.3 Nomenclature is provided to obtain uniform language for reports.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is designed to present in a standardized format information on the variability of strength of cement from a single source over a period of time. It can be applied to all hydraulic cements covered in Specifications C150, C595, and C1157. The results derived from this test method are intended for information only and are not requirements of any existing ASTM specification. A specification may refer to this test method to obtain information on the variability of cement from a single source.4.2 The procedure is based on obtaining samples from locations during the delivery of cement to the user and is more representative of the variability of cement used in concrete production than test data reported on mill test reports. Variation determined from the test results is corrected for testing error, therefore giving the user one indicator of the source variation of the cement.NOTE 1: It should be recognized that concrete strength variability is influenced by other factors in addition to cement strength variability.4.3 This test method does not provide information on the relationship between the variability of cement and the variability of concrete properties. The user can, along with supplementary information or correlative testing of concrete properties, develop quantitative estimates of the effects.1.1 This test method covers a procedure for determining the variability of a hydraulic cement produced at a single source using strength tests as the characteristic property. It is intended that this test method normally be used for the predominant cement manufactured at a cement plant. Guidelines for sampling, testing, presentation of results, and evaluation are given.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as the standard. The values stated in each system may not be exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. One system of units is used in the Figure and Tables in this standard to illustrate the calculation methods that are applicable independent of the system of units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method measures a lubricant's ability to protect hypoid final drive axles from abrasive wear, adhesive wear, plastic deformation, and surface fatigue when subjected to low-speed, high-torque conditions. Lack of protection can lead to premature gear or bearing failure, or both.5.2 This test method is used, or referred to, in specifications and classifications of rear-axle gear lubricants such as:5.2.1 Specification D7450.5.2.2 American Petroleum Institute (API) Publication 1560.5.2.3 SAE J308.5.2.4 SAE J2360.1.1 This test method, commonly referred to as the L-37-1 test, describes a test procedure for evaluating the load-carrying capacity, wear performance, and extreme pressure properties of a gear lubricant in a hypoid axle under conditions of low-speed, high-torque operation.31.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct SI equivalent such as National Pipe threads/diameters, tubing size, or where there is a sole source supply equipment specification.1.2.1.1 The drawing in Annex A6 is in inch-pound units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are provided in 7.2 and 10.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 These procedures should be used to test topical antimicrobial-containing preparations that are intended to be fast-acting in reducing significantly the number of microorganisms on intact skin immediately and, for preoperative and vascular precatheterization preparations, maintenance of some degree of reduction for an extended time.1.1 The practice is designed to measure the reduction of the microflora of the skin.1.2 A knowledge of microbiological techniques is required for these procedures.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—In this practice, metric units are used for all applications except for linear measure, in which case inches are used, and metric units follow in parentheses.1.4 Performance of this procedure requires a knowledge of regulations pertaining to the protection of human subjects (1).2NOTE 1: Importantly, it must be noted that the FDA currently does not accept data resulting from procedures in this Method for testing products for approval as Vascular Precatheterization Skin Preparations.1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is designed to present in a standardized format information on the variability of limestone or lime from a single source over a period of time. It can be applied to all materials covered in Test Methods C25, C110, C1271, and C1301, and Specification C141.1.1 This practice is intended for use in instances where the purchaser desires information on the uniformity of limestone or lime produced at a single source. It is intended that this test method normally be used for the predominant material manufactured at a plant. Guidelines for sampling, testing and presentation of results (Table 1) are given.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The procedure is used to test the antimicrobial effectiveness of handwashing formulations. The test formulations generally are designed for frequent use to reduce the transient bacterial flora on hands. Alcohol-based hand rubs and other leave-on formulations used without the aid of water should be tested using Test Method E2755.1.1 This test method is designed to determine the effectiveness of antimicrobial handwashing agents for the reduction of transient microbial skin flora when used in a handwashing procedure.21.2 A knowledge of microbiological techniques is required for these procedures.1.3 This test method may be used to evaluate topical antimicrobial handwash formulations.1.4 Performance of this procedure requires the knowledge of regulations pertaining to the protection of human subjects.31.5 The values stated in SI units are to be regarded as standard; except for distance, in which case inches are used and metric units follow in parentheses.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.For more specific precautionary statements see 8.2.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Laboratory measurement of application properties of architectural coatings generally employ a blade-type applicators that lay down films of highly uniform thickness. Applicators, such as brushes and rollers, typically apply films that lack uniformity due to variations in rheology, film build, flow and leveling properties resulting in the practical hiding of most paints being less than that measured on films applied with a blade-type applicator. This guide provides an indication of the actual application properties of the paint, as applied by a contractor or consumer.1.1 This guide describes procedures for the application of brush or roller, or both, applied paint films to sealed wallboard for evaluating application properties.1.2 Because both the application and panel evaluation are subjective, this guide should be used only for comparative testing within one laboratory using one operator for each set of applications, as the ratings assigned by different laboratories may not agree.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This standard practice is a procedure to evaluate the ductility of side bend test specimens that are a transverse section of the pipe wall and butt fusion. Side bend test specimens are prepared from bend test coupons from sample polyethylene pipe butt fusion joints that are made using polyethylene pipe having a wall thickness of approximately 1 in. (25 mm) and greater. A three-point bend is applied to the side bend test specimen by pressing the side bend test specimen into a gap between two rotatable supports with a loading nose. The bending load is applied such that the bending strain is transverse to the plane of the fusion joint.5.2 Equipment for cutting bend test coupons, preparing side bend test specimens and conducting this practice is available for laboratory and for field use.5.3 Benchmark criteria for evaluating field testing results are developed by testing a statistically valid number of sample butt fusions in a controlled environment, preferably using equipment for field use. Guided side bend test results from field tests are then evaluated by comparison to benchmark test results from the controlled environment.1.1 This practice provides information on apparatus, specimen preparation and procedure for conducting a guided three point side bend evaluation of a transverse specimen cut from a coupon removed from a butt fusion joint in polyethylene pipe having a wall thickness of approximately 1 in. (25 mm) and thicker. See Fig. 1. This practice provides a means to assess ductility of a butt fusion joint by applying a lateral (side) bending strain across a specimen taken from the full butt fusion cross-section, from outside diameter to inside diameter.NOTE 1: For wall thicknesses less than 1 in. the user is referred to Practice F2620, Appendix X4.1 for bend back testing.FIG. 1 Guided Side Bend Conceptual Schematic1.2 No test values are provided by this practice. The result is a non-numerical report. Criteria for test result evaluation are provided in standards or codes that specify the use of this practice by comparison to benchmark laboratory results as described in 5.3 or by comparison to example results presented in Appendix X1 to this practice.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: Laboratory methods that are commonly used for testing polyethylene butt fusion joints include Test Method D638, Test Method D790 and Test Method F2634.NOTE 3: This practice has been developed for use on butt fusion joints in polyethylene pipe with a wall thickness of 1.00 in. or greater. The practice may be used on butt fusion joints in polyethylene pipe with thinner wall thicknesses. However, the applicability of the practice should be determined by the user of the practice.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Online analyzers are used to provide quality data on lots of coal. The resulting quality data are used as a production tool or for some contractual application. This guide provides the means of evaluating the analyzer system and the data produced.5.2 Become familiar with the document's terminology and layout. The section on test design and data collection will provide the means by which all the analysis data will be gathered. The test should be carefully designed to ensure the user’s requirements are met.5.3 The procedures defined in this guide can be used to estimate the accuracy and precision of an online analyzer: (1) to conduct acceptance testing following installation and (2) to monitor the accuracy and precision (a) during routine use (quality control), (b) when significant changes are made to the analyzer, and (c) when a significant change in the coal being analyzed occurs (for example, a different seam at a mine, or a new coal source at a power plant). These procedures can also be used for calibration purposes.1.1 This guide provides techniques to be used for the evaluation of the measurement performance of online coal analyzers.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice applies to production quality control and customer acceptance of regularly transmitting sheet materials such as tinted windows where visual color discrimination is critical.1.1 This practice was developed to help its users critically judge the transmitted color appearance of transparent sheet materials. Its primary application is for colored flat glass and plastic materials.1.2 This practice is not meant to be used to evaluate colors of curved, diffusing, self-luminous, or opaque materials.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Gloss3 is associated with the capacity of a surface to reflect more light in some directions than in others. The directions associated with mirror (or specular) reflection normally have the highest reflectances. Gloss is best seen and analyzed when the surfaces studied are illuminated by a light source that provides strong contrasting patterns of light and dark. Such a light source is described in this test method.5.2 The simplest concept of gloss is that it corresponds to the mirror-like reflectances of surfaces. However, the distributions and intensities of this surface-reflected light are (for real materials) highly variable and affected by a variety of factors: surface smoothness and contour, refractive index, absorptance, angle of incidence, and (to a generally small extent) wavelength. From the great variety of surface-reflection patterns met in materials of commerce, it has been possible to identify seven surface-reflection criteria or “types of gloss” regularly used by skilled technologists for intercomparing and rating their products for gloss. Six of the seven criteria, or “types of gloss,” are identified in the section on definitions. The seventh, luster or contrast gloss, is seldom of concern to the coatings industry.1.1 This test method covers the visual evaluation of gloss differences of coating surfaces, using special types of lamps for illumination. It identifies six aspects or types of gloss that one may look for when using the lamp to assess gloss differences between surfaces. It describes the conditions for using the lamps to best identify small differences in each of the six types of gloss. Four levels of visual gloss differences are distinguished.1.2 While this technique is useful for both weathered and unweathered specimens, it has not been applied to metallics.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The guide may be used to demonstrate the effectiveness of topical antimicrobial products using pigskin as a surrogate for human skin and the cup scrub technique for sampling.5.2 The techniques described can be used to simulate Test Method E1174 and will use the pigskin substrate to overcome limitations posed by exposure of human subjects to potentially pathogenic microorganisms, while offering the benefit of applicability to a wide variety of hand-washing conditions that cannot be simulated in test tubes.5.3 Use of the pigskin surrogate offers less expensive and higher throughput screening.1.1 This guide is designed to demonstrate the effectiveness of hand hygiene topical antimicrobial products using pigskin as a surrogate model.1.2 Knowledge of microbiological techniques is required for these procedures.1.3 This standard guide can be used to evaluate topical antimicrobial handwash or handrub formulations.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Rock for erosion control consists of individual pieces of natural stone. The ability of these individual pieces of stone to resist deterioration due to weathering action affects the stability of the integral placement of rock for erosion control and hence, the stability of construction projects, structures, shorelines, and stream banks.5.2 The sodium sulfate or magnesium sulfate soundness test is one method by which to estimate qualitatively the durability of rock under weathering conditions. This test method was developed to be used in conjunction with additional test methods listed in Practice D4992. This test method does not provide an absolute value, but rather an indication of the resistance to freezing and thawing; therefore, the results of this test method are not to be used as the sole basis for the determination of rock durability.5.3 This test method has been used to evaluate many different types of rocks. There have been occasions when test results have provided data that have not agreed with the durability of rock under actual field conditions; samples yielding a low soundness loss have disintegrated in actual usage, and the reverse has been true.NOTE 1: The quality of results produced by this standard is dependent on the competence of the personnel performing it and suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors and Practice D3740 provides a means of evaluating some of them.1.1 This test method covers test procedures for evaluating the soundness of rock for erosion control by the effects of a sodium or magnesium sulfate solution on slabs of rock. It is an accelerated weathering test. The rock slabs, prepared in accordance with procedures in Practice D5121, are intended to be representative of erosion control sized materials and their inherent weaknesses. The test is appropriate for breakwater stone, armor stone, riprap and gabion sized rock materials.1.1.1 The limitations of this test are twofold. First the test is a simulation of freezing and thawing conditions using accelerated life cycling techniques. The test evaluates the internal expansive force derived from the rehydration of the salt upon re-immersion, an event that may not occur in some natural environments, to simulate the expansion of water rather than the actual freezing of water. Secondly, the size of the cut rock slab specimens may eliminate some of the internal defects present in the rock structure. The test specimens may not be representative of the quality of the larger rock samples used in construction. Careful examination of the rock source and proper sampling are essential in minimizing this limitation.1.2 The use of reclaimed concrete and other materials for erosion control is beyond the scope of this test method.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.3.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The slug unit is not given unless dynamic (F=ma) calculations are involved.1.3.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This practice implicitly combines two separate systems of units; the absolute and the gravitational systems. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.3.3 Calculations are done using only one set of units; either SI or gravitational inch-pound. Other units are permissible, provided appropriate conversion factors are used to maintain consistency of units throughout the calculations, and similar significant digits or resolution, or both are maintained.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.4.1 For purposes of comparing measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.4.2 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 The sulfur print reveals the distribution of sulfur as sulfide inclusions in the specimen. The sulfur print complements macroetch methods by providing an additional procedure for evaluating the homogeneity of a steel product.5.2 Sulfur prints of as-cast specimens generally reveal the solidification pattern and may be used to assess the nature of deoxidation, that is, rimming action versus killed steel sulfur distributions.5.3 Sulfur prints will reveal segregation patterns, including refilled cracks, and may reveal certain physical irregularities, for example, porosity or cracking.5.4 The nature of metal flow, such as in various forging operations, can be revealed using sulfur prints of specimens cut parallel to the metal flow direction.5.5 The sulfur print method is suitable for process control, research and development studies, failure analysis, and for material acceptance purposes.5.6 The intensity of the sulfur print is influenced by the concentration of sulfur in the steel, the chemical composition of the sulfide inclusions, the aggressiveness of the aqueous acid solution, and the duration of the contact printing between the acid soaked emulsion coated paper and the ground surface of the specimen (this time is the order of seconds rather than minutes). Very low sulfur content steels will produce too faint an image to be useful for macrostructural evaluations. Selection of appropriate printing practices including selection of type of emulsion coated media, acid type and strength, will yield satisfactory prints. Very faint images in the sulfur print can be made more visible by scanning the sulfur print into a PC, and using a photo editor to increase the color saturation. Steels with compositions that produce predominantly titanium or chromium sulfides will not produce useful images.1.1 This practice provides information required to prepare sulfur prints (also referred to as Baumann Prints) of most ferrous alloys to reveal the distribution of sulfide inclusions.1.2 The sulfur print reveals the distribution of sulfides in steels with bulk sulfur contents between about 0.010 and 0.40 weight percent.1.3 Certain steels contain complex sulfides that do not respond to the test solutions, for example, steels containing titanium sulfides or chromium sulfides.1.4 The sulfur print test is a qualitative test. The density of the print image should not be used to assess the sulfur content of a steel. Under carefully controlled conditions, it is possible to compare print image intensities if the images are formed only by manganese sulfides.1.5 The sulfur print image will reveal details of the solidification pattern or metal flow from hot or cold working on appropriately chosen and prepared test specimens.1.6 This practice does not address acceptance criteria based on the use of the method.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 9.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

SNM monitors are an effective and unobtrusive means to search pedestrians for concealed SNM. Nuclear facility security plans often include SNM monitors as one means to help prevent theft or unauthorized removal of designated quantities of SNM from access areas. This guide describes a way to evaluate and categorize the relative performance of available SNM monitors that might be considered for use in a security plan. The significance of the evaluation for monitor users is that evaluated monitoring equipment has a verified capability. Unexpected deficiencies such as low sensitivity for highly self-absorbing forms of SNM, lower than expected sensitivity in areas having high natural background intensity, or a high nuisance-alarm probability from electronic noise or faulty alarm logic often can be detected during evaluation and corrected before a monitor is placed in operation or further marketed. The significance of the evaluation for monitor manufacturers is that it may disclose deficiencies in design or construction that, when corrected, will improve the product. A monitor verified to be in a particular sensitivity category will be a product that customers who need that level of performance can purchase in good faith. The established sensitivity categories for evaluated monitors will provide information to regulatory agencies on the performance range of monitoring equipment for detecting small quantities of SNM. Independent monitor evaluation will encourage monitor manufacturers to provide appropriate documentation for calibrating and operating their monitors to obtain the best possible performance for detecting SNM. The underlying assumptions in this guide are that SNM monitors are applied in a wide range of background environments at facilities that process a variety of chemical and physical forms of SNM. The operational experience with a monitor at one facility provides little comparative information for a user of SNM monitors at another facility where the environment and materials are different. A laboratory evaluation in a characterized environment using characterized test sources and providing information on both SNM detection probability and nuisance alarm probability does provide useful comparative information on different monitors. The user of evaluation results is warned that the results are comparative ones for selection of monitoring equipment used to detect small quantities of SNM. Obtaining equivalent or better results for monitoring small quantities of SNM at any facility rests on properly installing the monitor at an appropriate location, maintaining monitor calibration, keeping the monitor in good repair with a testing and maintenance program, and providing proper training for operating personnel. The evaluation uses essentially unshielded test sources; hence, results are based on detecting the entire gamma-ray or neutron spectrum of the sources. The effect of deliberate use of shielding materials on the performance of SNM monitors is beyond the scope of this guide.1.1 The requirement to search pedestrians for special nuclear material (SNM) to prevent its theft has long been a part of both United States Department of Energy and United States Nuclear Regulatory Commission rules for the physical protection of SNM. Information on the application of SNM monitors to perform such searches is provided in Guide C1112. This guide establishes a means to compare the performance of different SNM pedestrian monitors operating in a specific laboratory environment. The goal is to provide relative information on the capability of monitors to search pedestrians for small quantities of concealed SNM under characterized conditions. The outcome of testing assigns a sensitivity category to a monitor related to its SNM mass-detection probability; the monitor’s corresponding nuisance-alarm probability for that sensitivity category is also determined and reported. 1.2 The evaluation uses a practical set of worst-case environmental, radiation emission, and radiation response factors so that a monitor’s lowest level of performance in a practical operating environment for detecting small quantities of SNM is evaluated. As a result, when that monitor is moved from laboratory to routine operation, its performance will likely improve. This worst-case procedure leads to unclassified evaluation results that understate rather than overstate the performance of a properly used SNM monitor in operational use. 1.3 The evaluation applies to two types of SNM monitors that are used to detect small quantities of SNM. Both are automatic monitors; one monitors pedestrians as they walk through a portal formed by the monitor’s radiation detectors (walkthrough or portal monitor), and the other monitors pedestrians who are stationary for a short period of time while they are monitored (wait-in monitor). The latter can be a portal monitor with a delay mechanism to halt a pedestrian for a few seconds or it can be an access-control booth or room that contains radiation detectors to monitor a pedestrian waiting for clearance to pass. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
357 条记录,每页 15 条,当前第 1 / 24 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页