微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The spiral contractometer, properly used, will give reproducible results (see 9.5) over a wide range of stress values. Internal stress limits with this method can be specified for use by both the purchaser and the producer of plated or electroformed parts.5.2 Plating with large tensile stresses will reduce the fatigue strength of a product made from high-strength steel. Maximum stress limits can be specified to minimize this. Other properties affected by stress include corrosion resistance, dimensional stability, cracking, and peeling.5.3 In control of electroforming solutions, the effects of stress are more widely recognized, and the control of stress is usually necessary to obtain a usable electroform. Internal stress limits can be determined and specified for production control.5.4 Internal stress values obtained by the spiral contractometer do not necessarily reflect the internal stress values found on a part plated in the same solution. Internal stress varies with many factors, such as coating thickness, preparation of substrate, current density, and temperature, as well as the solution composition. Closer correlation is achieved when the test conditions match those used to coat the part.1.1 This test method covers the use of the spiral contractometer for measuring the internal stress of metallic coatings as produced from plating solutions on a helical cathode. The test method can be used with electrolytic and autocatalytic deposits.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method details the standard procedure for measuring the viscosity of resin solutions. The apparatuses required here are constant-temperature water bath, wide-mouthed screw capped bottles, cellophane sheets, No. 2 short taper corks, viscosity tube holder, bottle shaker, timing device, and viscosity tubes. Solid resins are dissolved in organic solvents by cold-cut or hot-cut methods in the laboratory. The viscosity of such prepared solutions, or of commercial solutions of resins is then determined by the bubble time method. The bubble seconds are approximately equal to stokes.1.1 This practice provides instructions for preparing resin solutions viscosity measurement by bubble time method.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Calibration is a fundamental part of making measurements and its effect on the quality of measurement data is significant. Thus, sufficient attention must be given to calibration when it is established for a measurement method so that the data produced will be acceptable. The use of an inappropriate calibration standard, inadequate instructions for calibration, and poor documentation of the calibration process are examples of circumstances that can adversely affect the validity of a calibration. Thus, the calibration process must conform to criteria established to ensure the validity of calibration results and any associated measurement data. Such criteria are given in Guide C1009, in which calibration is identified as a component of laboratory quality assurance (see Fig. 1). This guide expands upon those criteria to provide more comprehensive guidance for establishing calibration.FIG. 1 Quality Assurance of Analytical Laboratory Data4.2 The manner of calibration and other technical requirements for calibrating a measurement method are usually established when a method is first introduced into a laboratory, which may be through validation and qualification as defined by Guide C1068 (see Fig. 1). However, calibration involves more than the technical aspects of the calibration process. The other dimension of the process is the operational requirements that are necessary to ensure that calibration results are valid and that they are documented and verifiable should their integrity be questioned. The provisions of this guide provide those operational requirements and should be considered whenever calibration is planned and established.1.1 This guide provides the basis for establishing calibration for a measurement method typically used in an analytical chemistry laboratory analyzing nuclear materials. Guidance is included for such activities as preparing a calibration procedure, selecting a calibration standard, controlling calibrated equipment, and documenting calibration. The guide is generic and any required technical information specific for a given method must be obtained from other sources.1.2 The guidance information is provided in the following sections:  SectionGeneral Considerations 5Calibration Procedure 6Calibration Standard 7Control of Calibrated Equipment 8Documentation 9Keywords 101.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice describes procedures applicable to both shop and field conditions. More comprehensive or precise measurements of the characteristics of complete systems and their components will generally require laboratory techniques and electronic equipment such as oscilloscopes and signal generators. Substitution of these methods is not precluded where appropriate; however, their usage is not within the scope of this practice.5.2 This document does not establish system acceptance limits, nor is it intended as a comprehensive equipment specification.5.3 While several important characteristics are included, others of possible significance in some applications are not covered.5.4 Since the parameters to be evaluated and the applicable test conditions must be specified, this practice shall be prescribed only by those familiar with ultrasonic NDT technology and the required tests shall be performed either by such a qualified person or under his supervision.5.5 Implementation may require more detailed procedural instructions in the format of the using facility.5.6 In the case of evaluation of a complete system, selection of the specific tests to be made should be done cautiously; if the related parameters are not critical in the intended application, then their inclusion may be unjustified. For example, vertical linearity may be irrelevant for a go/no-go test with a flaw gate alarm, while horizontal linearity might be required only for accurate flaw-depth or thickness measurement from the display screen.5.7 No frequency of system evaluation or calibration is recommended or implied. This is the prerogative of the using parties and is dependent on application, environment, and stability of equipment.5.8 Certain sections are applicable only to instruments having receiver gain controls calibrated in decibels (dB). While these may sometimes be designated “gain,” “attenuator,” or “sensitivity” on various instruments, the term “gain controls” will be used in this practice in referring to those which specifically control instrument receiver gain but not including reject, electronic distance-amplitude compensation, or automatic gain control.5.9 These procedures can generally be applied to any combination of instrument and search unit of the commonly used types and frequencies, and to most straight-beam examination, either contact or immersed. Certain sections are also compatible with angle-beam, wheel, delay-line, and dual-search unit techniques. Their use, however, should be mutually agreed upon and so identified in the test report.5.10 The validity of the results obtained will depend on the precision of the instrument display readings. This is assumed to be ±0.04 in. (±1 mm), yielding between 1 % and 2 % of full scale (fs) readability for available instrumentation having suitable screen graticules and display sharpness.1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in Guide E1324.1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated.1.3 The procedures are applicable to shop or field conditions; additional electronic measurement instrumentation is not required.1.4 This practice establishes no performance limits for examination systems; if such acceptance criteria are required, these must be specified by the using parties. Where acceptance criteria are implied herein, they are for example only and are subject to more or less restrictive limits imposed by customer's and end user's controlling documents.1.5 The specific parameters to be evaluated, conditions and frequency of test, and report data required must also be determined by the user.1.6 This practice may be used for the evaluation of a complete examination system, including search unit, instrument, interconnections, fixtures and connected alarm and auxiliary devices, primarily in cases where such a system is used repetitively without change or substitution. This practice is not intended to be used as a substitute for calibration or standardization of an instrument or system to inspect any given material. There are limitations to the use of standard reference blocks for that purpose.21.7 Required test apparatus includes selected test blocks and a precision external attenuator (where specified) in addition to the instrument or system to be evaluated.1.8 Precautions relating to the applicability of the procedures and interpretation of the results are included.1.9 Alternate procedures, such as examples described in this document, or others, may only be used with customer approval.1.10 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Moisture content is one of the most important variables affecting the properties of wood and wood-based materials. The procedures in these test methods are structured to permit the full range of use from fundamental research to industrial processing. Method A is the reference (primary) standard for determining moisture content of wood and wood-based materials, which is designed for obtaining the most precise values of moisture content consistent with the needs of the user. It provides means of assessing variability contributed by the oven or specimen hygroscopicity, or both. In addition, criteria are described for defining the endpoint in oven-drying. Method B provides relatively simple procedures of measuring moisture content, but generally with a lower precision than Method A. Representativeness of the specimens to the full-size product, including knots, sapwood, and heartwood, needs to be considered. These methods are not recommended for use with treated wood products impregnated with creosote, petroleum, and their solutions where the volatile non-wood chemicals contained in the specimen introduce greater bias than desired in the results.1.1 These test methods cover the determination of the moisture content (MC) of wood, veneer, and other wood-based materials, including those that contain adhesives and chemical additives. The test procedures appear in the following order:    Sections  Method A—Primary Oven-Drying Method 5  Method B—Secondary Oven-Drying Method 61.2 The primary oven-drying method (Method A) is intended as the sole primary method. It is structured for purposes where the highest accuracy or degree of precision is needed (for example, research or calibration).1.3 The secondary oven-drying method (Method B) is intended for the purposes where the primary procedure (Method A) is not desired or justified. Test results in this method are generally less precise than in Method A.1.4 For materials that have been chemically treated or impregnated with creosote, petroleum, and their solutions such that the oven-drying procedures introduce greater bias than desired in the results, other methods, such as AWPA A6, are recommended.1.5 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is for the use of manufacturers and users of equipment for visual appraisal or measurement of appearance, those writing standards related to such equipment, and others who wish to specify precisely conditions of viewing or measuring attributes of appearance. The use of this practice makes such specifications concise and unambiguous. The functional notation facilitates direct comparisons of the geometric specifications of viewing situations and measuring instruments.1.1 This practice describes the geometry of illuminating and viewing specimens and the corresponding geometry of optical measurements to characterize the appearance of materials. It establishes terms, symbols, a coordinate system, and functional notation to describe the geometric orientation of a specimen, the geometry of the illumination (or optical irradiation) of a specimen, and the geometry of collection of flux reflected or transmitted by the specimen, by a measurement standard, or by the open sampling aperture.1.2 Optical measurements to characterize the appearance of retroreflective materials are of such a special nature that they are treated in other ASTM standards and are excluded from the scope of this practice.1.3 The measurement of transmitted or reflected light from areas less than 0.5 mm in diameter may be affected by optical coherence, so measurements on such small areas are excluded from consideration in this practice, although the basic concepts described in this practice have been adopted in that field of measurement.1.4 The specification of a method of measuring the reflecting or transmitting properties of specimens, for the purpose of characterizing appearance, is incomplete without a full description of the spectral nature of the system, but spectral conditions are not within the scope of this practice. The use of functional notation to specify spectral conditions is described in ISO 5/1.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The quality of the stripe for visibility in daylight or under road lighting is determined by the luminance coefficient under diffuse illumination, Qd, and depends on the materials used, age, and wear pattern. These conditions shall be observed and noted by the user.5.2 Under the same conditions of illumination and viewing, higher levels of Qd correspond to higher levels of lightness.5.3 Reflectivity of pavement (road) markings degrade with traffic wear and require periodic measurement to ensure that sufficient line visibility is provided to drivers.5.4 For a given viewing distance, measurements of Qd made with a reflectometer having a geometry corresponding to that distance are a good indicator of the visual ranking of material measured.5.5 specified by CEN, the measurement geometry of the instrument is based on a viewing distance of 30 m and an eye height of 1.2 m.5.6 It shall be the responsibility of the user to employ an instrument having the specified co-viewing angle.1.1 This test method covers measurement of the luminance coefficient under diffuse illumination of horizontal pavement markings, such as traffic stripes and surface symbols, and pavement surfaces, in a particular viewing direction using a portable reflectometer.NOTE 1: The luminance coefficient under diffuse illumination is a measure of the reflection of horizontal pavement markings and pavement surfaces in a particular viewing direction in daylight or under road lighting. Diffuse illumination approximates daylight illumination from the overcast sky, and road lighting as an average of locations on the pavement surface.1.2 The co-viewing angle of the reflectometer affects the readings. As specified by the European Committee for Standardization (CEN), the co-viewing angle shall be 2.29°.1.3 This test method is intended to be used for field measurement of pavement markings and pavement surfaces but may be used to measure the performance of materials on sample panels before placing the marking material in the field.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method applies to the one-dimensional laminar (viscous) flow of air in porous materials such as soil.Note 1—This test method deals with porous materials with both gaseous (air) and liquid (pore water) mobile fluids: The liquid phase is much less compressible, has a higher viscosity, and is much more tightly bound to the solid phase by chemical forces. The assumption of single-phase flow may still be presumed to be valid since the test gradient ensuring the conditions of laminar flow may be low enough that flow of the liquid phase is negligible.4.2 The degree of saturation of the specimen shall be less than that which would produce significant internal transport of pore water or alter the continuity of air voids under the applied gradients. The maximum permissible degree of saturation must be evaluated by an experienced analyst. In no instance shall the specimen be so saturated that pore water appears at the exit of the permeameter cell during the test.4.3 This test method is based on the assumption that the rate of mass flow through the specimen is constant with time.Note 2—When a specimen contains volatile materials this assumption is violated. The mass of gas flowing out will be greater than that flowing in, the gradient cannot be determined and the test may become meaningless. Such specimens pose special problems and must be decontaminated before analysis in order to minimize health and safety concerns and to prevent contamination of the test apparatus.4.4 The permeability of porous materials may be strongly dependent on a variety of physical properties including the void ratio, the degree of saturation, and percent and direction of compaction. It is beyond the scope of this test method to elaborate upon these dependencies. Rather, this test method is intended to be a measurement technique for determining the permeability under a certain set of laboratory conditions. It is the responsibility of the test requestor to specify which soil parameters must be controlled to ensure a valid extension of the test results to field conditions.4.5 Calculation of the permeability using Darcy’s law requires laminar flow conditions through the soil specimen. The conditions for laminar flow shall be evaluated by plotting the volumetric flow rate of air through the specimen against the pressure drop across the specimen. If the individual test points lie within 25 % of a straight line passing through the origin, then laminar flow conditions are present and Darcy's law may be used to calculate the permeability.Note 3—The permeability calculated using this standard is valid only when the degree of saturation does not change over time. Long measurement times associated with the use of bubble meters and manometers may indirectly lead to variability when measuring flow versus pressure drop (see 8.2) due to evaporation. The recommended use of digital electronic flow and pressure sensors leads to considerably reduced measurement times because the user can quickly determine by inspection when a steady state condition has been reached. At that point only a single reading needs to be taken for a reliable measurement. A rapid course of measurement will minimize dehydration of unsaturated specimens.Note 4—Humidifying the test gas to minimize specimen dehydration is not recommended because: (1) there is no practical way to either measure or control the relative humidity of the test gas, either at the inlet or outlet of the specimen; (2) the calibration of typical digital flowmeters are generally for dry air only and would become unreliable in the presence of water vapor, especially in view of the potential for irreversible adsorption of moisture on the sensor elements; (3) there is a danger of permanent water condensation in the static transfer lines and other apparatus dead volumes; and (4) the test apparatus would become more complex and difficult to use.4.6 This test method covers the use of two different types of permeameter cells (flexible and rigid wall permeameters) and two types of air flow regulation (mass flow control and pressure control).4.7 A flexible wall permeameter is the preferred means for confining the test specimen in accordance with Test Methods D5084, D4525, and D4767. This test method may still be performed using a rigid wall permeameter, but all reference to effective confining stress and the permeameter cell pressure system shall then be disregarded.4.8 For some specimens, the permeability will be strongly dependent on the effective confining stress due to porosity reduction. Whenever possible, the requestor shall specify the field overburden conditions at which this test method is to be performed. In some specimens, this stress will vary significantly with flow in an indeterminate way. All specimens shall be evaluated for this effect by performing this test method at two or more different confining stress values when a flexible wall permeameter is used.4.9 This test method is intended to support soil remediation operations such as: soil vapor extraction, air sparging, backfilling of soils in utility trenches, and similar engineering activities.4.10 The correlation between results obtained with this test method and in situ field measurements has only been partially established. The small laboratory specimen used in this method may not be representative of the distributed condition on-site due to vadose zone fluctuations, changes in soil stratigraphy, and so forth. For this reason, caution should be used by qualified personnel when applying laboratory test results to field situations.Note 5—This test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies which meet the criterion of Practice D3740 are generally considered capable of competent and objective testing.1.1 This test method covers laboratory determination of the coefficient of permeability for the flow of air through unsaturated porous materials.1.2 This test method may be used with intact or compacted coarse grained soils, silts, or lean cohesive soils that have a low degree of saturation and that have permeability between 1.0 × 10-15 m2 (1.01 millidarcy) and 1.0 × 10-10 m2 (101 darcy).1.3 The values stated in SI units are to be regarded as standard.1.3.1 By tradition in U.S. practice, the permeability of porous media is reported in units of darcy, although the SI unit for permeability is m2.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 For the purpose of comparing a measured or calculated value with specified limits, the measured or calculated value shall be rounded to the same precision as the specified limits.1.4.2 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 An important aspect of the appearance of glossy coating surfaces is the distinctness (clarity) of images reflected by them. The values obtained in this measuring procedure correlate well with visual ratings for DOI (image clarity).4.2 Although Test Methods D523 and D4039 are useful in characterizing some aspects of glossy appearance, they do not provide satisfactory ratings for DOI (image clarity).4.3 The measurement conditions given conform to the conditions specified in Test Methods E430.4.4 The measurement conditions given in this test method conform to the conditions specified in ISO 10216.4.5 The scale values obtained with the measuring procedures of this test method range from 0 to 100 with a value of 100 representing perfect DOI (image clarity).4.6 The DOI (image clarity) scale value does not, of itself, indicate any specific cause for reduction in reflected image sharpness. Surface irregularities such as haze, orange peel, and wrinkle, when present, may be cited as causes for reduction of image sharpness.1.1 These test methods describe the measurement of the distinctness-of-image (DOI) gloss of coating surfaces using electro-optical measuring techniques.1.2 The coatings assessed shall be applied to planar rigid surfaces.1.3 Test Method—The light through a small slit is projected on the specimen surface and its reflected image intensity is measured through a sliding combed shutter to provide a value of image clarity.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is a standard procedure for determining the air leakage characteristics of installed exterior windows and doors under specified static air pressure differences.NOTE 1: The air pressure differences acting across a building envelope vary greatly. The factors affecting air pressure differences and the implications of the resulting air leakage relative to the environment within buildings are discussed in the literature.3, 4, 5 These factors should be fully considered in specifying the test pressure differences to be used.5.2 Rates of air leakage are sometimes used for comparison purposes. Such comparisons may not be valid unless the components being tested and compared are of essentially the same size, configuration, and design.5.3 Rates of air leakage of essentially identical windows or doors, as determined in the laboratory (Test Method E283) and as measured in the field by this test method, have sometimes been used for comparison purposes. The correlation between the laboratory and field test results, and the correlation between actual performance of in-service products and the response to these tests has not been established because of insufficient data.5.4 Rates of air leakage, as determined by this test method may be affected by: the age or physical condition of the test specimen; the type or quality of installation; the care exercised in the attachment of the test apparatus and the determination of extraneous leakage; and the actual conditions to which the test specimen is exposed beyond those imposed by the test method, that is temperature, relative humidity, wind impingement, etc. Consideration must be given to the proper selection of test specimens, the choice of appropriate test technique (when a choice is given within this test method), and the proper use and interpretation of the results obtained from this test to minimize the effect of these conditions.5.5 Rates of air leakage, as determined by this test method may include air leakage that does not occur during normal operation and exposure, or that does not contribute to the overall air leakage for the structure. Air may be supplied to or exhausted from wall cavities or adjacent construction, or may bypass interior or exterior trim or components in a manner not experienced during normal operation or exposure. Care must be taken to prevent such leakage from occurring, or consideration must be given that such leakage may have occurred during the test.5.6 This test method addresses the issue of air leakage through the high pressure face of the test specimen only. Air leakage from the adjacent wall cavity through sill, head, and jambs of the window frame is considered extraneous air leakage and, therefore, not a component of the measured specimen air leakage. Such extraneous air leakage through the perimeter frame of the test specimen can be a significant source of air leakage into, or out of, the building if the frame is not sealed against air infiltration from the adjacent wall cavity.1.1 This test method provides a field procedure for determining the air leakage rates of installed exterior windows and doors.1.2 This test method is applicable to exterior windows and doors and is intended to measure only such leakage associated with the assembly and not the leakage through openings between the assemblies and adjacent construction. The test method can be adapted for the latter purpose, provided the potential paths of air movement and the sources of infiltration and exfiltration can be identified, controlled, or eliminated.1.3 This test method attempts to create and given set of natural environmental conditions. There is a strong possibility that the test method or the test apparatus may, by virtue of their design and use, induce air leakage that does not occur under natural environmental exposure.1.4 This test method is intended for the field testing of installed exterior windows or doors. Persons interested in laboratory testing of fenestration products should reference Test Method E283.1.5 Persons using this procedure should be knowledgeable in the area of fluid mechanics and instrumentation practices, and shall have a general understanding of fenestration products and components.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 7.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method has the advantage of extreme simplicity. It is a crude and non-specific test method, but it is useful in the study of long-term trends. It requires very little investment in equipment and can be carried out without a large technically-skilled staff.5.2 This test method is useful for obtaining samples of settleable particulate matter for further chemical analysis (1).41.1 This test method covers a procedure for collection of dustfall and its measurement. This test method is not appropriate for determination of the dustfall rate in small areas affected by specific sources. This test method describes determination of both water-soluble and insoluble particulate matter.1.2 This test method is inappropriate for industrial hygiene use except where other more specific methods are also used.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Few standards exist to objectively determine flax quality. Shive is the woody core of the stem and has an important effect on quality determination. Shive content will vary depending on the stage of processing and can determine in what products the fiber can be used. Spectroscopic data provide an accurate, precise and rapid determination of the amount of shive in flax fiber.5.1.1 If there are differences of practical significance between reported test results for two or more laboratories, comparative tests should be performed by those laboratories to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples that are as homogeneous as possible are drawn from the material from which the disputed test results were obtained, and are randomly assigned in equal numbers to each laboratory. These results from the two laboratories should be compared using a statistical test for unpaired data, a possibility level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that fiber sample type must be adjusted in consideration of the known bias.5.2 This test method gives data on shive content of retted flax fiber which can be used as a basis for: (1) estimating the net amount of manufacturing fiber obtainable from retted flax fiber; (2) along with other measurements, predicting the quality of flax products, particularly their aesthetic properties; (3) adjusting processing machinery for maximum efficiency in cleaning; and (4) relating shive content to end-product quality and processing efficiency.1.1 This test method covers the measurement of shives in retted flax.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Spacecraft have consistently had the problem of contamination of thermal control surfaces from line-of-sight warm surfaces on the vehicle, outgassing of materials and subsequent condensation on critical surfaces, such as solar arrays, moving mechanical assemblies, cryogenic insulation schemes, and electrical contacts, control jet effects, and other forms of expelling molecules in a vapor stream. To this has been added the need to protect optical components, either at ambient or cryogenic temperatures, from the minutest deposition of contaminants because of their absorptance, reflectance or scattering characteristics. Much progress has been accomplished in this area, such as the careful testing of each material for outgassing characteristics before the material is used on the spacecraft (following Test Methods E595 and E1559), but measurement and control of critical surfaces during spaceflight still can aid in the determination of location and behavior of outgassing materials.1.1 This practice provides guidance for making decisions concerning the use of a quartz crystal microbalance (QCM) and a thermoelectrically cooled quartz crystal microbalance (TQCM) in space where contamination problems on spacecraft are likely to exist. Careful adherence to this document should ensure adequate measurement of condensation of molecular constituents that are commonly termed “contamination” on spacecraft surfaces.1.2 A corollary purpose is to provide choices among the flight-qualified QCMs now existing to meet specific needs.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Surface cracks are among the most common defects found in structural components. An accurate characterization and understanding of crack-front behavior is necessary to ensure successful operation of a structure containing surface cracks. The testing of laboratory specimens with surface cracks provides a means to understand and quantify surface crack behavior, but the test results must be interpreted correctly to ensure transferability between the laboratory specimen and the structure.5.2 Transferability refers to the capacity of a fracture mechanics methodology to correlate the crack-tip stress and strain fields of different cracked bodies. Traditionally, the correlation has been based on the presence at fracture of a dominant, asymptotically singular, crack-tip field with amplitude set by the value of a single parameter, such as the stress intensity factor, KI, or the J-integral. For components and specimens with high crack-tip constraint, the singular crack-tip field dominates over microstructurally significant size scales for loads ranging from globally linear-elastic conditions to moderately large-scale plasticity. For specimens with low crack-tip constraint, a dominant single-parameter crack-tip field exists only at low levels of plasticity. At higher levels of plasticity, the opening mode stress of the low constraint specimen is lower than predicted by the single-parameter, asymptotically singular fields. Therefore, low constraint specimens often exhibit larger fracture toughness than do high constraint specimens. If feasible, users are strongly encouraged to generate high constraint fracture toughness data using methods such as Test Methods E399 or E1820 prior to testing the surface crack geometry.5.2.1 To address this phenomenon, two-parameter fracture criteria are used to include the influence of crack-tip constraint. Crack-tip constraint has been quantified using various scalar parameters including the T-stress (10, 11, 12), Q (13, 14), stress triaxiality (15, 16), and αh (17, 18). Fracture toughness in a two-parameter methodology is not a single value, but rather is a curve that defines a critical locus of fracture toughness and constraint values (2). Fig. 2 illustrates a toughness-constraint locus for application of two-parameter fracture mechanics to structures. A structural analysis provides the driving force curve for the configuration of interest, and is plotted with the toughness-constraint locus obtained from specimen test data. Crack extension is predicted when the driving force curve passes through the toughness-constraint locus.5.3 Tests conducted with this method provide data to assist in the prediction of structural capability in the presence of a surface crack by including a measure of crack-tip constraint in the interpretation of fracture toughness values. This improves the correlation of test specimen and structural conditions. To achieve the most accurate comparison, the conditions tested in accordance with this test method should match the structure as closely as possible. For conservative structural assessment, the user should ensure that conditions in the test specimen produce higher levels of constraint relative to the structure in application of the data. Factors that influence test specimen conditions include, but are not limited to, specimen geometry, a/c, a/B, loading conditions, as well as the amount and type of crack extension that occurred during the test.NOTE 3: The use of a constraint-based framework for the analysis of surface cracks permits a more realistic assessment of structural capability. This approach generally leads to a less conservative assessment than would be achieved, for example, by using a measure of high-constraint fracture toughness obtained from testing standard C(T) and SE(B) specimens of the material following Test Method E1820. It is essential that constraint effects measured in surface crack tests with this method be applied to any structural assessment with the requisite understanding to maintain appropriate levels of conservatism.5.4 This test method does not address environmental effects or loading rate effects that may be significant in assessing service integrity.1.1 This test method describes the method for testing fatigue-sharpened, semi-elliptically shaped surface cracks in rectangular flat panels subjected to monotonically increasing tension or bending. Tests quantify the crack-tip conditions at initiation of stable crack extension or immediate unstable crack extension.1.2 This test method applies to the testing of metallic materials not limited by strength, thickness, or toughness. Materials are assumed to be essentially homogeneous and free of residual stress. Tests may be conducted at any appropriate temperature. The effects of environmental factors and sustained or cyclic loads are not addressed in this test method.1.3 This test method describes all necessary details for the user to test for the initiation of crack extension in surface crack test specimens. Specific requirements and recommendations are provided for test equipment, instrumentation, test specimen design, and test procedures.1.4 Tests of surface cracked, laboratory-scale specimens as described in this test method may provide a more accurate understanding of full-scale structural performance in the presence of surface cracks. The provided recommendations help to assure test methods and data are applicable to the intended purpose.1.5 This test method prescribes a consistent methodology for test and analysis of surface cracks for research purposes and to assist in structural assessments. The methods described here utilize a constraint-based framework (1, 2)2 to evaluate the fracture behavior of surface cracks.NOTE 1: Constraint-based framework. In the context of this test method, constraint is used as a descriptor of the three-dimensional stress and strain fields in the near vicinity of the crack tip, where material contractions due to the Poisson effect may be suppressed and therefore produce an elevated, tensile stress state (3, 4). (See further discussions in Terminology and .) When a parameter describing this stress state, or constraint, is used with the standard measure of crack-tip stress amplitude (K or J), the resulting two-parameter characterization broadens the ability of fracture mechanics to accurately predict the response of a crack under a wider range of loading. The two-parameter methodology produces a more complete description of the crack-tip conditions at the initiation of crack extension. The effects of constraint on measured fracture toughness are material dependent and are governed by the effects of the crack-tip stress-strain state on the micromechanical failure processes specific to the material. Surface crack tests conducted with this test method can help to quantify the material sensitivity to constraint effects and to establish the degree to which the material toughness correlates with a constraint-based fracture characterization.1.6 This test method provides a quantitative framework to categorize test specimen conditions into one of three regimes: (I) a linear-elastic regime, (II) an elastic-plastic regime, or (III) a field-collapse regime. Based on this categorization, analysis techniques and guidelines are provided to determine an applicable crack-tip parameter for the linear-elastic regime (K or J) or the elastic-plastic regime (J), and an associated constraint parameter. Recommendations are provided to assess the test data in the context of a toughness-constraint locus (2). For tension loading, a computer program referred to as TASC V1.0.2 (Tool for Analysis of Surface Cracks) may be used to perform the analytical assessments in Section 9, Analysis of Results. The user is directed to other resources for evaluation of the test specimen in the field-collapse regime when extensive plastic deformation in the specimen eliminates the identifiable crack-front fields of fracture mechanics.NOTE 2: TASC. The computer program TASC is available at no charge either at https://software.nasa.gov/software/MFS-33082-1 or at https://sourceforge.net/projects/tascnasa/. The use of TASC relieves the user of the burden of performing unique elastic-plastic finite element analyses for each test performed in the elastic-plastic regime. For the purposes of this standard, TASC calculations are equivalent to finite element analysis results. Users of TASC should follow the methodologies in Annex A6 for establishing analysis material property inputs. Documentation on the development, verification and validation of TASC is provided in references (5, 6, 7, 8).1.7 The specimen design and test procedures described in this test method may be applied to evaluation of surface cracks in welds; however, the methods described in this test method to analyze test measurements may not be applicable. Weld fracture tests generally have complicating features beyond the scope of data analysis in this test method, including the effects of residual stress, microstructural variability, and non-uniform strength. These effects will influence test results and must be considered in the interpretation of measured quantities.1.8 This test method is not intended for testing surface cracks in steel in the cleavage regime. Such tests are outside the scope of this test method. A methodology for evaluation of cleavage fracture toughness in ferritic steels over the ductile-to-brittle region using C(T) and SE(B) specimens can be found in Test Method E1921.1.9 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.10 This practice may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 Different electroplating systems can be corroded under the same conditions for the same length of time. Differences in the average values of the radius or half-width or of penetration into an underlying metal layer are significant measures of the relative corrosion resistance of the systems. Thus, if the pit radii are substantially higher on samples with a given electroplating system, when compared to other systems, a tendency for earlier failure of the former by formation of visible pits is indicated. If penetration into the semi-bright nickel layer is substantially higher, a tendency for earlier failure by corrosion of basis metal is evident.1.1 This test method provides a means for measuring the average dimensions and number of corrosion sites in an electroplated decorative nickel plus chromium or copper plus nickel plus chromium coating on steel after the coating has been subjected to corrosion tests. This test method is useful for comparing the relative corrosion resistances of different electroplating systems and for comparing the relative corrosivities of different corrosive environments. The numbers and sizes of corrosion sites are related to deterioration of appearance. Penetration of the electroplated coatings leads to appearance of basis metal corrosion products.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
394 条记录,每页 15 条,当前第 1 / 27 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页