微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method describes the means of determining the LRV of a tile specimen. Certain building codes require the use of materials rated by LRV. Application of this test method provides the means for rating ceramic tile. LRVs reported for ceramic tile should include reference to the observer and illuminant for which the rating is valid. 5.2 LRV is a property dependent on the overall color of a tile specimen. Control of LRV is achieved through control of color and adherence to color specifications will govern the acceptability of a product with respect to LRV. Therefore, a product cannot be judged as having an unacceptable LRV unless the color of the product is found to be unacceptable. 5.3 Mixtures of several tile products are commonly installed on a surface, requiring a means to calculate LRV for a product mix. The rating obtained for an individual tile product can be used to calculate the LRV for a product mix using the following equation: where: n   =   number of products included in the mix, p1 to n   =   the proportion of the surface area taken up by each product; the sum of p1 to pn must equal one), and LRV1 to n   =   the LRV for each product used. For example, a mixture of two products is used on a surface. Two thirds of the surface area is covered by product A with a LRV of 75 %, and one third of the surface is covered by product B with an LRV of 60 % (see Fig. 2). Using the equation, the product mix is found to have an LRV of 70 %. FIG. 2 Example of Product Mix Used on Surface 5.4 The test method described herein provides instrumental means as the basis for judging color difference. Magnitude of color difference between pairs of ceramic tile can be determined and expressed in numerical terms. 5.5 Based on interlaboratory investigation,3 color difference ΔE of plain-colored tile, if determined in accordance with this test method, should give excellent reproducibility with a standard deviation of not more than σ = ±0.15 units. LRV should also give excellent reproducibility when used for solid colored tile based on the relationship between LRV and either the Y tristimulus or L value. However, LRV reproducibility for multicolored, speckled, or textured surface tile will be dependent upon the degree of variation of the tile specimen, and will require a different measurement procedure to minimize the impact of the variation. 5.6 The test method requires the use of multiple illuminants for the determination of color difference between solid-colored tiles. Evaluation under incandescent, fluorescent and daylight illuminant conditions ensure the color differences calculated between a test and reference specimen account for the possible occurrence of metamerism. 1.1 This test method covers the measurement of Light Reflectance Value (LRV) and visually small color difference between pieces of glazed or unglazed ceramic tile, using any spectrophotometer that meets the requirements specified in the test method. LRV and the magnitude and direction of the color difference are expressed numerically, with sufficient accuracy for use in product specification. 1.2 LRV may be measured for either solid-colored tile or tile having a multicolored, speckled, or textured surface. For tile that are not solid-colored, an average reading should be obtained from multiple measurements taken in a pattern representative of the overall sample as described in 9.2 of this test method. Small color difference between tiles should only be measured for solid-color tiles. Small color difference between tile that have a multicolored, speckled, or textured surface are not valid. 1.3 For solid colored tile, a comparison of the test specimen and reference specimen should be made under incandescent, fluorescent and daylight illuminant conditions. The use of multiple illuminants allows the color difference measurement to be made without the risk of wrongly accepting a match when the tiles being compared are metamers (see 3.1.4). 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The ball seam height of a baseball or softball is a measurement that can correlate to ball grip and aerodynamic properties.4.2 This test method is suitable for obtaining data in research and development, quality control, and classifying balls by seam type.4.3 Sports associations can use seam height standards in specifications for official baseballs and softballs.4.4 Users of this test method may be testing individual baseballs or softballs or entire production lots of baseballs or softballs. If a single ball or small sample of balls are being measured for individual properties, multiple measurements should be performed on the balls. If a large sample of balls is being measured for the overall seam characteristics of the large sample, then an individual seam height measurement may be recorded for a ball. Thus, number of measurement points (m) on any one ball is at the discretion of the test sponsor of this test method.1.1 This test method is intended to standardize a method of measuring the seam height of baseballs and softballs.1.2 This standard is established to provide a single, repeatable, and uniform test method.1.3 This test method is for a ball that is intended for use in the game of baseball or softball.1.4 Units—The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method is used for three purposes: the laboratory measurement of (1) the sound transmission loss of fully operable doors equipped with a particular combination of hardware and seals, (2) the sound transmission loss of a laboratory sealed door panel and (3) the force or torque required to operate the door system. This test method relies upon Test Method E 90 for acoustical testing, and all requirements in that standard, including Annex A2 (Laboratory Accreditation). Also see 6.1 for additional references and requirements. This test method is not intended for field tests. Field tests of sound transmission should be performed in accordance with Test Method E 336. This test method evaluates the overall sound transmission loss of an operable door system which may include various seals and hardware components. An additional (nonmandatory) test procedure for assessing individual door components is given in Appendix X1. 1.1 This test method describes the laboratory measurement of the sound transmission loss for door panels and door systems. It also includes the measurement of the force required to close and latch, as well as to unlatch the door under test. An appendix presents methods to determine the respective contribution of the door components and seals to the sound transmission loss of a door system. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

The color of gingiva or changes in gingival color can be observed. The light reflected from the facial surfaces of the gingiva can be used to calculate color coordinates. These data reveal information about the efficacy of a product, treatment studied, or epidemiology of anti-gingivitis treatments. For example, clinical studies of gingivitis treatment systems evaluate the efficacy of manufacturers' products. The change in color of the facial surface gingiva can be used to determine and optimize the efficacy of anti-gingivitis treatments. For example, the data can provide the answer to the question: “What product or system is the most efficacious in the treatment of gingivitis?” Chronic inflammatory disease of the gingiva and periodontium results in destruction of gingival connective tissue, periodontal ligament, and alveolar bone. Clinically, inflammation is seen as redness, swelling, and bleeding observed upon probing. This procedure is suitable for use in diagnosis and monitoring, research and development, epidemiological or other surveys, marketing studies, comparative product analysis, and clinical trials. Popular methods assess gingival inflammation via repeated clinical examination of the gingival tissues. , These methods typically quantify gingival color, which are used to assess gingival health or disease, at multiple intraoral sites on the gingiva using a simple non-linear scoring system or index. Assessment of gingival color is an important component of health status for mild-to-severe gingival disease. These techniques are time-consuming, subjective, and often invasive, and for archival purposes, separate intraoral photographs must be collected to document gingival color and appearance. Variation between and among examiners may contribute to appreciable differences in measurement. 1.1 This test method covers the procedure, instrumental requirements, standardization procedures, material standards, measurement procedures, and parameters necessary to make precise measurements of gingival color. In particular it is meant to measure the color of gingiva in human subjects. 1.2 Digital images are used to evaluate gingival color on the facial labial or buccal surfaces of the gingiva. The marginal gingival tissue adjacent to natural teeth may be of particular interest for analysis. All other non-relevant parts; such as teeth, tongue, spaces, dental restorations or prostheses, etc., must be separated from the measurement and the analysis. All localized discoloration; such as stains, inclusions, pigmentations, etc., may be separated from the measurement and the analysis. 1.2.1 The broadband reflectance factors of gingiva and the surrounding tissue are measured. The colorimetric measurement is performed using an illuminator(s) that provides controlled illumination on the gingiva using a digital still camera to capture the digital image. 1.3 Data acquired using this test method may be used to assess personal gingival color for the purposes of identifying overall health status, health status at specific sites in the mouth, or to track changes in personal health status for individuals over time. Pooled data may be used to assess gingival color, health and disease among populations in epidemiological surveys, evaluation of comparative product efficacy, or safety and treatment response in clinical trials involving gingival health or disease. 1.4 The apparatus, measurement procedure, and data analysis technique are generic, so that a specific apparatus, measurement procedure, or data analysis technique may not be excluded. 1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 NTA is one of the very few techniques that are able to deal with the measurement of particle size distribution in the nano-size region. This guide describes the NTA technique for direct visualization and measurement of Brownian motion, generally applicable in the particle size range from several nanometers until the onset of sedimentation in the sample. The NTA technique is usually applied to dilute suspensions of solid material in a liquid carrier. It is a first principles method (that is, calibration in the standard understanding of this word, is not involved). The measurement is hydrodynamically based and therefore provides size information in the suspending medium (typically water). Thus the hydrodynamic diameter will almost certainly differ from size diameters determined by other techniques and users of the NTA technique need to be aware of the distinction of the various descriptors of particle diameter before making comparisons between techniques (see 8.7). Notwithstanding the preceding sentence, the technique is routinely applied in industry and academia as both a research and development tool and as a QC method for the characterization of submicron systems.1.1 This guide deals with the measurement of particle size distribution of suspended particles, from ~10 nm to the onset of sedimentation, sample dependent, using the nanoparticle tracking analysis (NTA) technique. It does not provide a complete measurement methodology for any specific nanomaterial, but provides a general overview and guide as to the methodology that should be followed for good practice, along with potential pitfalls.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 This practice provides a methodology for measuring the duration of wetness on a sensing element mounted on a surface in a location of interest. Experience has shown that the sensing element reacts to factors that cause wetness in the same manner as the surface on which it is mounted.3.2 Surface moisture plays a critical role in the corrosion of metals and the deterioration of nonmetallics. The deposition of moisture on a surface can be caused by atmospheric or climatic phenomena such as direct precipitation of rain or snow, condensation, the deliquescence (or at least the hygroscopic nature) of corrosion products or salt deposits on the surface, and others. A measure of atmospheric or climatic factors responsible for moisture deposition does not necessarily give an accurate indication of the TOW. For example, the surface temperature of an object may be above or below both the ambient and the dew point temperatures. As a result condensation will occur without an ambient meteorological indication that a surface has been subjected to a condensation cycle.3.3 Structural design factors and orientation can be responsible for temperature differences and the consequent effect on TOW as discussed in 4.2. As a result, some surfaces may be shielded from rain or snow fall; drainage may be facilitated or prevented from given areas, and so forth. Therefore various components of a structure can be expected to perform differently depending on mass, orientation, air flow patterns, and so forth. A knowledge of TOW at different points on large structures can be useful in the interpretation of corrosion or other testing results.3.4 In order to improve comparison of data obtained from test locations separated on a macrogeographical basis, a uniform orientation of sensor elements boldly exposed in the direction of the prevailing wind, at an angle of 30° above the horizontal is recommended. Elevation of the sensor above ground level should be recorded.3.5 Although this method does not develop relationships between TOW and levels of ambient relative humidity (RH), long term studies have been carried out to show that the TOW experienced annually by panels exposed under standard conditions is equivalent to the cumulative time the RH is above a given threshold value.2 This time value varies with location and with other factors. Probability curves have been developed for top and bottom surfaces of a standard panel at one location which show the probable times that a surface will be wet as a percentage of the cumulative time the relative humidity is at specific levels.3 If needed, it should be possible to develop similar relationships to deal with other exposure conditions.1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture.1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus.1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Thermal conductivity measurements on small insulation specimens are important during new product development processes or when larger specimens cannot be collected during forensic investigation (that is, failure analysis) (1, 2).5.2 Numerous research projects have recently been initiated to develop insulation materials that have very high thermal resistivities (greater than 83 (m K)/W). Projects ranging from coatings to improve the thermal performance of single pane/layer glazing systems to the development of novel insulation products for building envelopes are being undertaken (1-4). All these projects have struggled in the development of new material technologies due to the difficulty associated with the measurement of thermal conductivity of small sections (approximately 0.025 m by 0.025 m) of high thermal resistance materials. As new materials are being developed, the size of each test specimen impacts the cost of development. Most of the existing test equipment and the methods do not align with the researcher’s need; the equipment requires a large specimen size is time consuming, and expensive to produce.5.3 This practice provides a standardized procedure to enable the thermal characterization of small specimens of insulation materials. Accurate, and reliable thermal metrology to assess thermal properties of new insulation materials, such as novel very low thermal conductivity (< 0.01 W/ (m K)) nanomaterials or bio-based foam insulations, in small material sample sections, and minimal data analysis requirements is the desired outcome of this practice.5.4 The ratio of the area of the specimen and the heat flux transducer has a significant impact on the uncertainty of the results obtained from this practice. As the specimen area decreases this ratio decreases, a smaller percentage of the total heat flow is associated with the unknown specimen. Information from the literature (4) shows that some heat-flow-meter apparatus, generally not available commercially and used by the research laboratories only, can be modified to change out the heat flux transducer so that transducers of varying sizes can be deployed. The observations presented in Fig. 2 were obtained from the measurements done by such a heat-flow-meter apparatus that was modified to change out the heat flux transducer. Fig. 2 demonstrates the significance of the ratio of the area of the specimen and the heat flux transducer on the accuracy of the thermal conductivity measurement using this Practice. This exercise is not a required part of this Practice and Fig. 2 is for information only.FIG. 2 Example of a data set obtained from 0.010 m2 (that is, 0.10 m × 0.10 m) heat flux transducer (heat flow) exploring the uncertainty (that is, difference between full size XPS specimen and smaller XPS specimen placed inside the mask) of varying thicknesses, 0.005 m, 0.010 m, and 0.020 m1.1 This practice covers the measurement of steady state thermal transmission properties of the small flat slab thermal insulation specimen using a heat-flow-meter apparatus.1.2 This practice provides a supplemental procedure for use in conjunction with Test Method C518 for testing a small specimen. This practice is limited to only small specimens and, in all other particulars, the requirements of Test Method C518 apply.1.3 This practice characterizes small specimens having lateral dimensions less than the lateral dimensions of the heat flux transducer used to measure the heat flow. The procedure in Test Method C518 shall be used for specimens having lateral dimensions equal to or larger than the lateral dimensions of the heat flux transducer.NOTE 1: The lower limit for specimen size is typically determined by the user for their particular material. As an example, Ref. (1)2 established a lower limit for specimen dimensions of 0.1 m by 0.1 m for several different thermal insulation materials for a 0.3 m by 0.3 m heat-flow-meter apparatus having a heat flux transducer 0.15 m by 0.15 m.1.4 This practice is intended only for research purposes, in particular, when larger specimens are unavailable. This practice shall not be used in conjunction with Test Method C518 for certification testing of products; compliance with ASTM Specifications; or compliance with regulatory or building code requirements.1.5 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this practice.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test can be a guide to end-users on the formation of lubricant-generated, insoluble deposits.5.2 The results from this test are intended to be used as a condition monitoring trending tool as part of a comprehensive program, as outlined in standards such as Practice D4378.1.1 This test method extracts insoluble contaminants from a sample of in-service turbine oil onto a patch and the color of the membrane patch is analyzed by a spectrophotometer. The results are reported as a ΔE value, within the CIELAB scale.1.2 This test method is not appropriate for turbine oils with dyes.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method may be used to validate the performance of a specific rotational viscometer apparatus.5.2 This test method may be used to validate the performance of a specific method based upon the measurement of viscosity using rotational viscometer apparatus.5.3 This test method may be used to determine the repeatability of a specific apparatus, operator, or laboratory.5.4 This test method may be used for specification or regulatory compliance purposes.1.1 This test method provides procedures for validating viscosity measurements by rotational viscometers of Newtonian fluids. Performance parameters determined include viscosity repeatability (precision), detection limit, quantitation limit, linearity, and bias.1.2 Validation of apparatus performance and analytical methods is requested or required for quality initiatives or where results may be used for legal purposes.1.3 The values stated in SI units are the standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Measurements made by this test method are related to the night time brightness of retroreflective traffic signs approximately facing the driver of a mid-sized automobile equipped with tungsten filament headlights at about 200 m distance.5.2 Retroreflective material used on traffic signs degrades with time and requires periodic measurement to ensure that the performance of the retroflection provides adequate safety to the driver.5.3 The quality of the sign as to material used, age, and wear pattern will have an effect on the coefficient of retroreflection. These conditions need to be observed and noted by the user.5.4 This test method is not intended for use for the measurement of signs when the instrument entrance and observation angles differ from those specified herein.1.1 This test method covers measurement of the retroreflective properties of sign materials such as traffic signs and symbols (vertical surfaces) using a portable retroreflectometer that can be used in the field. The portable retroreflectometer is a hand-held instrument with a defined standard geometry that can be placed in contact with sign material to measure the retroreflection in a standard geometry. The measurements can be compared to minimum requirements to determine the need for replacement. Entrance and observation angles specified in this test method are those used currently in the United States and may differ from the angles used elsewhere in the world.1.2 This test method is intended to be used for the field measurement of traffic signs but may be used to measure the performance of materials before placing the sign in the field or before placing the sign material on the sign face.1.3 This test method covers measurements at a 0.2 degree observation angle. See Test Method E2540 for measurements at a 0.5 degree observation angle.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Wet film thickness measurements aid in the prediction of dry film thickness. In instances where dry film thickness cannot be measured nondestructively, wet film thickness is frequently specified. Also, the ability to determine wet film thickness during application can provide the opportunity to correct the application procedures.1.1 These test methods cover the determination of wet film thickness of organic coatings such as paint, varnish, and lacquer. Two methods are described as follows:1.1.1 In Test Method A, the Wet Film Thickness Gage (English or Metric graduation (see 5.1)) is used to measure wet film thicknesses up to 60 mils on the English scale series, and up to 700 μm on the metric scale series (Sections 5 – 8).1.1.2 In Test Method B, the Pfund Gage is used to measure wet film thicknesses up to 14.2 mils (360 μm) (Sections 9 – 13).1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A BL has been established for this test to provide a standard against which all other oils can be compared. The BL oil is an SAE 20W-30 grade fully formulated lubricant. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. The test method was developed to compare the test oil to the BL oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIE test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight 3856 kg or less. The tests are conducted using a specified spark-ignition engine with a displacement of 3.6 L (General Motors)4 on a dynamometer test stand. It applies to multi-viscosity oils used in these applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct equivalent such as the units for screw threads, National Pipe threads/diameters, tubing size, and single source supply equipment specifications. Additionally, Brake Specific Fuel Consumption (BSFC) is measured in kilogram per kilowatt hour.1.3 This test method is arranged as follows:Subject SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Torque Control 6.4Dynamometer 6.4.1Dynamometer Torque 6.4.2Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Fuel Flow Measurement 6.7.2Fuel Temperature and Pressure Control to the Fuel Flow Meter 6.7.3Fuel Temperature and Pressure Control to Engine Fuel Rail 6.7.4Fuel Supply Pumps 6.7.5Fuel Filtering 6.7.6Engine Intake Air Supply 6.8Intake Air Humidity 6.8.1Intake Air Filtration 6.8.2Intake Air Pressure Relief 6.8.3Temperature Measurement 6.9Thermocouple Location 6.9.5AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Exhaust Manifolds 6.11.1Laboratory Exhaust System 6.11.2Exhaust Back Pressure 6.11.3Pressure Measurement and Pressure Sensor Locations 6.12Engine Oil 6.12.2Fuel to Fuel Flow Meter 6.12.3Fuel to Engine Fuel Rail 6.12.4Exhaust Back Pressure 6.12.5Intake Air 6.12.6Intake Manifold Vacuum/Absolute Pressure 6.12.7Coolant Flow Differential Pressure 6.12.8Crankcase Pressure 6.12.9Engine Hardware and Related Apparatus 6.13Test Engine Configuration 6.13.1ECU (Power Control Module) 6.13.2Thermostat Block-Off Adapter Plate 6.13.3Wiring Harness 6.13.4Thermostat Block-Off Plate 6.13.5Oil Filter Adapter Plate 6.13.6Modified Throttle Body Assembly 6.13.7Fuel Rail 6.13.8Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.2Engine Assembly Procedure 9.3General Assembly Instructions 9.3.1Bolt Torque Specifications 9.3.2Sealing Compounds 9.3.3Harmonic Balancer 9.3.5Thermostat 9.3.6Coolant Inlet 9.3.7Oil Filter Adapter 9.3.8Dipstick Tube 9.3.9Sensors, Switches, Valves, and Positioners 9.3.10Ignition System 9.3.11Fuel Injection System 9.3.12Intake Air System 9.3.13Engine Management System 9.3.14Accessory Drive Units 9.3.15Exhaust Manifolds 9.3.16Engine Flywheel and Guards 9.3.17Lifting of Assembled Engines 9.3.18Engine Mounts 9.3.19Non-Phased Camshaft Gears 9.3.20Internal Coolant Orifice 9.3.21Calibration 10Stand/Engine Calibration 10.1Procedure 10.1.1Reporting of Reference Results 10.1.2Analysis of Reference/Calibration Oils 10.1.3Instrument Calibration 10.2Engine Torque Measurement System 10.2.3Fuel Flow Measurement System 10.2.4Coolant Flow Measurement System 10.2.5Thermocouple and Temperature Measurement System 10.2.6Humidity Measurement System 10.2.7Other Instrumentation 10.2.8Test Procedure 11External Oil System 11.1Flush Effectiveness Demonstration 11.2Preparation for Oil Charge 11.3Initial Engine Start-Up 11.4New Engine Break-In 11.5Oil Charge for Break-In 11.5.2Break-In Operating Conditions 11.5.3Standard Requirements for Break-In 11.5.4Routine Test Operation 11.6Start-Up and Shutdown Procedures 11.6.1Flying Flush Oil Exchange Procedures 11.6.2Test Operating Stages 11.6.3Stabilization to Stage Conditions 11.6.4Stabilized BSFC Measurement Cycle 11.6.5BLB1 Oil Flush Procedure for BL Oil Before Test Run 1 11.6.6BSFC Measurement of BLB1 Oil Before Test Oil Run 2 11.6.7BLB2 Oil Flush Procedure for BL Oil Before Test Oil 11.6.8BSFC Measurement of BLB2 Oil Before Test Oil 11.6.9Percent Delta Calculation for BLB1 vs. BLB2 11.6.10Test Oil Flush Procedure 11.6.11Test Oil Aging, Phase I 11.6.12BSFC Measurement of Aged (Phase I) Test Oil 11.6.13Test Oil Aging, Phase II 11.6.14BSFC Measurement of Aged (Phase II) Test Oil 11.6.15Oil Consumption and Sampling 11.6.16Flush Procedure for BL Oil (BLA) After Test Oil 11.6.17General Test Data Logging Forms 11.6.18Diagnostic Review Procedures 11.6.19Determination of Test Results 12Final Test Report 13Precision and Bias 14Keywords 15Annexes  ASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Detailed Specifications and Drawings of Apparatus Annex A5Oil Heater Bolton 255 Refill Procedure Annex A6Engine Part Number Listing Annex A7Safety Precautions Annex A8Sequence VIE Test Report Forms and Data Dictionary Annex A9Statistical Equations for Mean and Standard Deviations Annex A10Determining the Oil Sump Full Level and Consumption Annex A11Fuel Injection Evaluation Annex A12Pre-test Maintenance Checklist Annex A13Blow-by Ventilation System Requirements Annex A14Calculation of Test Results Annex A15Calculation of Un-weighted Baseline Shift Annex A16Non-Phased Cam Gear and Position Actuator Installation and GM Short Block Assembly Procedure Annex A17Procedure  Procurement of Test Materials Annex A18Alternate Fuel Approval Requirements Annex A19Appendix  Useful Information Appendix X11.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

5.1 The quality of the stripe is determined by the coefficient of retroreflected luminance, RL, and depends on the materials used, age, and wear pattern. These conditions shall be observed and noted by the user.5.2 Under the same conditions of illumination and viewing, larger values of RL correspond to higher levels of visual performance.5.3 Retroreflectivity of pavement (road) markings degrade with traffic wear and require periodic measurement to ensure that sufficient line visibility is provided to drivers.5.4 For a given viewing distance, measurements of RL made with a retroreflectometer having a geometry corresponding to that viewing distance are a good indicator of the visual ranking of material measured.5.5 As specified by CEN, the measurement geometry of the instrument is based on a viewing distance of 30 m, a headlight mounting height of 0.65 m directly over the stripe, and an eye height of 1.2 m directly over the stripe.5.6 It shall be the responsibility of the user to employ an instrument having the specified observation and entrance angles.1.1 This test method covers measurement of the retroreflective properties of horizontal pavement marking materials containing retroreflecting beads, such as traffic stripes and surface symbols, using a portable retroreflectometer that can be placed on the road delineation to measure the retroreflection at a prescribed geometry.NOTE 1: The restriction to bead based materials is for the purpose of ensuring a sufficiently gradual optical response function (from points of the source aperture to points of the receiver aperture) to allow generous sized instrument source and receiver apertures.1.2 The entrance and observation angles of the retroreflectometer affect the readings. As specified by the European Committee for Standardization (CEN), the entrance and observation angles shall be 88.76° and 1.05°, respectively.1.3 This test method is intended to be used for field measurement of pavement markings but may be used to measure the performance of materials on sample panels before placing the marking material in the field.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Protection of a species requires the prevention of detrimental effects of chemicals on the survival, growth, reproduction, health, and uses of individuals of that species. Behavioral toxicity tests provide information concerning the sublethal effects of chemicals and signal the presence of toxic test substances.5.1.1 The locomotory, feeding, and social responses of fish are adaptive and essential to survival. Major changes in these responses may result in a diminished ability to survive, grow, avoid predation, or reproduce and cause significant changes in the natural population (8). Fish behavioral responses are known to be highly sensitive to environmental variables as well as toxic substances.5.2 Results from behavioral toxicity tests may be useful for measuring injury resulting from the release of hazardous materials (9).5.3 Behavioral responses can also be qualitatively assessed in a systematic manner during toxicity tests to discern trends in sublethal contaminant effects (5).5.4 The assessment of locomotory, feeding, and social behaviors is useful for monitoring effluents and sediments from contaminated field sites as well as for defining no-effect concentrations in the laboratory or under controlled field conditions. Such behavioral modifications provide an index of sublethal toxicity and also indicate the potential for subsequent mortality.5.5 Behavioral toxicity data can be used to predict the effects of exposure likely to occur in the natural environment (10).5.6 Results from behavioral toxicity tests might be an important consideration when assessing the hazard of materials to aquatic organisms. Such results might also be used when deriving water quality criteria for fish and aquatic invertebrate organisms.5.7 Results from behavioral toxicity tests can be used to compare the sensitivities of different species, the relative toxicity of different chemical substances on the same organism, or the effect of various environmental variables on the toxicity of a chemical substance.5.8 Results of behavioral toxicity tests can be useful in guiding decisions regarding the extent of remedial action needed for contaminated aquatic and terrestrial sites.5.9 The behavioral characteristics of a particular organism need to be understood and defined before a response can be used as a measure of toxicity (11). Swimming, feeding, and social behavior varies among species as well as among life stages within a species; the most effective test methods are therefore those tailored to a particular life stage of a single species. The range of variability of any behavioral response of unexposed organisms is influenced by genetic, experiential, physiological, and environmental factors. It is thus important to avoid selecting test organisms from populations that may vary in these factors.5.10 Results of behavioral toxicity tests will depend on the behavioral response measured, testing conditions, water quality, species, genetic strain, life stage, health, and condition of test organisms. The behavioral response may therefore be affected by the test environment.5.11 No numerical value or range of values has been defined as the norm for swimming, feeding, or social behavior for any fish; the detection of abnormal activity is therefore based on comparisons of the responses of exposed fish, either with activity measured during a baseline or pre-exposure period or observations of fish under a control treatment (10).5.12 These measures are incorporated readily into standard toxicity test protocols, with minimal stress to the test organism.1.1 This guide covers some general information on methods for qualitative and quantitative assessment of the behavioral responses of fish during standard laboratory toxicity tests to measure the sublethal effects of exposure to chemical substances. This guide is meant to be an adjunct to toxicity tests and should not interfere with those test procedures.1.2 Behavioral toxicosis occurs when chemical or other stressful conditions, such as changes in water quality or temperature, induce a behavioral change that exceeds the normal range of variability (1). Behavior includes all of the observable, recordable, or measurable activities of a living organism and reflects genetic, neurobiological, physiological, and environmental determinants (2).1.3 Behavioral methods can be used in biomonitoring, in the determination of no-observed-effect and lowest-observed-effect concentrations, and in the prediction of hazardous chemical impacts on natural populations (3).1.4 The behavioral methods described in this guide include locomotory activity, feeding, and social responses, which are critical to the survival of fish (4).1.5 This guide is arranged as follows:  Section Number  1Referenced Documents  2Terminology  3Summary of Guide  4  5Interferences  6Safety Precautions  7Responses Measured  8Test Organisms  9Facility 10Qualitative Behavioral Assessment Method 11Quantitative Behavioral Measurements 12Experimental Design 13Calculation of Test Results 14Report 151.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. For an explanation of units and symbols, refer to IEEE/ASTM SI 10.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. While some safety considerations are included in this guide, it is beyond the scope of this guide to encompass all safety requirements necessary to conduct behavioral toxicity tests. Specific hazards statements are given in Section 7.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method can be used to obtain an estimate the transmission loss of building elements in a laboratory setting where the source room and the specimen mounting conditions satisfy the requirements of Test Method E90. The acceptability of the receiving room will be determined by a set of field indicators that define the quality and accuracy of the intensity estimate.5.2 By appropriately constructing the surface over which the intensity is measured it is possible to selectively exclude the influence of sound energy paths including the effects from joints, gaps as well as flanking sound paths. This method may be particularly useful when accurate measurements of a partition can not be made in an Test Method E90 facility because the partition sound insulation is limited by flanking transmission involving facility source and receiver room surfaces, (for example, the path from the source room floor to the receiver room floor via the isolators and the slab supporting the two). Annex A3 discusses this in detail.5.3 The discrete point method allows the mapping of the radiated sound intensity which can be used to identify defects or unique features (2) of the partition.5.4 Current research reported in the literature indicate that there exists a bias between measures of transmission loss obtained using the intensity technique and those obtained using the conventional two room reverberation technique (for example, Test Method E90, (3) and (4)). Appendix E provides estimates of the bias that might be expected. Despite the presence of a bias, no corrections are to be applied to the measured data obtained by this test method.1.1 This test method covers the measurement of airborne sound transmission loss of building partitions such as walls of all kinds, operable partitions, floor-ceiling assemblies, doors, windows, roofs, panels and other space-dividing building elements. It may also be have applications in sectors other than the building industry, although these are beyond the scope.1.2 The primary quantity reported by this standard is Intensity Transmission Loss (ITL) and shall not be given another name. Similarly, the single-number rating Intensity Sound Transmission Class (ISTC) derived from the measured ITL shall not be given any other name.1.3 This test method may be used to reveal the sound radiation characteristics of a partition or portion thereof.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: The method for measuring the sound intensity radiated by the building element under test defined by this ASTM standard meets or exceeds those of ISO 15186-1. Special consideration will have to be given to requirements for the source room and specimen mounting if compliance with ISO 15186-1 is also desired as they differ from those of this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
394 条记录,每页 15 条,当前第 2 / 27 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页