微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The determination of the tuft length of pile yarn floor covering is useful in quality and cost control during the manufacture of pile yarn floor covering. Both appearance and performance can be affected by changes in this characteristic.5.2 In case there are disputable differences between reported test results for two or more laboratories, comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. At a minimum, test samples should be used that are as homogeneous as possible, that are drawn from the material from which disputable test results were obtained, and that are assigned randomly in equal numbers to each laboratory for testing. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.1.1 This test method covers the measurement of tuft length and pile yarn length of uncoated pile floor coverings.1.2 Usually the tuft elements measured as directed in this test method will each be bound at only one binding site, but this test method also may be used for tuft elements bound at more than one binding site, provided that every tuft element measured is bound at the same number of binding sites.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

The physical and mechanical properties of cladding materials can be altered by exposure to a high-energy neutron flux. The magnitude and relationship of these changes are functions of the material and its metallurgical condition; the amount, rate, and energy spectrum of the radiation; the exposure temperature; the test temperature; the purity, velocity, volume, and purification system of the coolant; and effects of contained fuel.1.1 This practice covers the procedures for postirradiation examination of cladding, determination of breached nuclear fuel elements, selection of material and tests for radiation studies, determination of radiation conditions, conduction of tests for mechanical properties of cladding, and the reporting of data.1.2 The purpose of this practice is to provide detailed guidelines for the postirradiation examination of fuel element cladding and to achieve better correlation and interpretation of the data in the field of radiation effects.1.3 This practice may be applied to metallic cladding from all types of fuel elements. The tests described in this practice for determining mechanical properties of the fuel element cladding practice should be included in the preirradiation characterization of the cladding and for planning irradiation effects tests for evaluation of materials for cladding and other components in nuclear reactors.Note 1—The values stated in SI units as described in Standard E 380 are to be regarded as the standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The U.S. Environmental Protection Agency Regulations, 40 CFR 266, require that boilers, cement kilns, and other industrial furnaces utilizing waste-derived fuel adhere to specific guidelines in assessing potential metals emissions. A common approach for estimating potential emissions is performing total metals analysis on all feed stream materials. This practice describes a multi-stage microwave-assisted digestion procedure that solubilizes trace elements for spectroscopic analyses.1.1 This practice describes the multi-stage microwave digestion of typical industrial furnace feed stream materials using nitric, hydrofluoric, hydrochloric, and boric acids for the subsequent determination of trace metals.1.2 This practice has been used successfully on samples of coal, coke, cement raw feed materials, and waste-derived fuels composed primarily of waste paint-related material in preparation for measuring the following trace elements: Ag, As, Ba, Be, Cd, Cr, Hg, Pb, Sb, and Tl. This practice may be applicable to elements not listed above.1.3 This practice is also effective for other waste materials (for example, fly ash, foundry sand, alum process residue, cement kiln dust, etc.).1.4 The values stated in SI units are to be regarded as standard. Other units of measurement in parentheses in this standard are informational.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides guidance for verification and validation of structural FEMs that are used to support showings of compliance with CAA regulations.4.2 This practice is a companion to Specification F3114.1.1 This practice provides guidance for verification and validation of structural finite element models (FEMs) that are used to support showings of compliance with Civil Aviation Authority (CAA) regulations. This encompasses FEM predictions of internal loads, displacements, strains, stresses, stability, and post-buckling loads.1.2 This practice applies to normal category aeroplanes with a certified maximum take-off weight of 19 000 lb (8618 kg) or less and a passenger seating configuration of up to 19. Use of the term aircraft throughout this specification is intended to allow the relevant CAA(s) to accept this practice as a means of compliance for other aircraft as they determine appropriate.1.3 Code verification for FEM software is not included in the scope of this practice. It is expected, however, that the developer of software that is used to support showings of compliance has applied appropriate software quality assurance and numerical algorithm verification processes, including benchmark cases, to verify the accuracy and consistency of the solutions. Evidence of these activities should be recorded and documented and made available to the applicant and CAA upon request.1.4 The applicant for a design approval should verify CAA acceptance of this practice before using it to support showings of compliance. For information on which CAA regulatory bodies have accepted this practice (in whole or in part) as a means of compliance to airworthiness standards: normal category aeroplanes (hereinafter referred to as “the Rules”), refer to the ASTM F44 webpage (www.ASTM.org/COMMITTEE/F44.htm), which includes CAA website links.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 In addition to its cost management and project management functions, the ECES can also be used to support a number of other program and project functions. These functions include:5.1.1 Bid solicitation, collection, and evaluation;5.1.2 Communicating project data between installations, complexes, agencies, and industry;5.1.3 Providing a project checklist;5.1.4 Cost and schedule estimating;5.1.5 Historical cost/schedule data collection;5.1.6 Historical project data collection (for example, technology deployments, project conditions);5.1.7 Validating and calibrating cost estimates and software tools; and5.1.8 Establishing and disseminating best practices and lessons learned.5.2 Several government agencies are already incorporating this structure into existing and future cost estimating models, databases, and other similar software tools and systems.1.1 The Environmental Cost Element Structure (ECES) covered by Classification E2150 (and Adjunct E2150) provides a consistent and comprehensive structure across all phases of environmental remediation projects and is a tool to improve the cost management of those projects. This guide is intended to facilitate the application of the ECES to any environmental remediation project, without regard to project size.1.2 Classification E2150 establishes the broad, top-level framework for environmental remediation projects by providing a hierarchical list of project elements to two levels of detail. Its associated Adjunct E2150 supports the top-level structure by providing more detailed elements and definitions of the ECES to three additional levels of detail. Although it is assumed that the user is familiar with Classification E2150, much of the content of the classification is repeated in this guide to relieve the user of the burden of back-and-forth referencing during use. It is assumed, however, that all users of this guide will have at hand both Classification E2150 and the Adjunct E2150 during project planning.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Finite element analysis is a valuable tool for evaluating the performance of metallic stents and in estimating quantities such as stress, strain, and displacement due to applied external loads and boundary conditions. FEA of stents is frequently performed to determine the worst-case size for experimental fatigue (or durability) testing and differentiation of performance between designs. A finite element analysis is especially valuable in determining quantities that cannot be readily measured.1.1 Purpose—This guide establishes recommendations and considerations for the development, verification, validation, and reporting of structural finite element models used in the evaluation of the performance of a metallic vascular stent design undergoing uniform radial loading. This standard guide does not directly apply to non-metallic or absorbable stents, though many aspects of it may be applicable. The purpose of a structural analysis of a stent is to determine quantities such as the displacements, stresses, and strains within a device resulting from external loading, such as crimping or during the catheter loading process, and in-vivo processes, such as expansion and pulsatile loading.1.2 Limitations—The analysis technique discussed in this guide is restricted to structural analysis using the finite element method. This document provides specific guidance for verification and validation (V&V) of finite element (FE) models of vascular stents subjected to uniform radial loading using ASME V&V40 as the basis for developing and executing risk-informed V&V plans.1.2.1 Users of this document are encouraged to read ASME V&V40 for an introduction to risk-informed V&V, and to read ASME V&V10 for further guidance on performing V&V of computational solid mechanics models. This document is not intended to cover all aspects of developing a finite element model of radial deformation of a stent. It is intended for a FE analyst with structural modeling experience.1.2.2 While risk-informed V&V is encouraged, it is not required. Analysts may utilize alternate V&V methods. The methodology employed should be developed by knowledgeable stakeholders with consideration as to the expectations and requirements of internal teams and external bodies that will assess the performance of the stent and the credibility of the model used to make performance predictions.1.2.3 If an alternative V&V method is employed, then Sections 5, 6, 7, and 10 that follow ASME V&V40 guidelines may be viewed as suggestions only. Other portions of the document that refer to question of interest, risk, and context of use may be viewed in the same manner.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for informational purposes only.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Water treatment membrane devices can be used to produce potable water from brackish supplies and seawater as well as to upgrade the quality of industrial water. This standard permits the evaluation of the integrity and performance of membrane elements using visual observations and standard sets of conditions and are for short-term testing (<24 h). This standard can be used to determine changes that may have occurred in the operating characteristics of elements but are not intended to be used for plant design.1.1 This practice covers the inspection, performance testing, autopsy, and analytical work associated with evaluating pressure driven membrane separation elements (microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO)).1.2 This practice is applicable for elements when newly manufactured or at any time during their operation in a water treatment facility. The Analytical section (6.4) covers only membrane surface and foulant analyses.1.3 The data derived from these tests should be evaluated versus newly manufactured elements/bundles or against operating systems when they were initially brought on-stream, or both. Industry norms can also be used for comparative purposes.1.4 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This guide is intended as a guideline for justification of oil test selection for monitoring rolling element ball type bearing conditions in industrial applications. Continuous benchmarking against similar applications is required to ensure lessons learned are continuously implemented.5.2 Selection of oil tests for the purpose of detecting rolling element ball type bearing failure modes requires good understanding of equipment design, operating requirements and surrounding conditions. Specifically, detailed knowledge is required on bearing design configuration, dimensional tolerances, load directions, design limitations, lubrication mechanisms, lubricant characteristics, and metallurgy of lubricated surfaces including bearing cages. Equipment criticality and accessibility as well as application of other monitoring techniques (for example, vibration, ultrasound or thermal images) are also critical information in this analysis process. In addition, detailed knowledge on the lubricating oil is paramount.5.3 To properly apply the FMEA methodology users must understand the changes the system may encounter during all operating modes, their impact on design functions and available monitoring techniques capable of detecting these changes. To assist this approach, Section 6 will provide extensive descriptions on the rolling element ball type bearing failure modes, their causes and effects.5.4 It is recognized that in most industrial applications vibration monitoring is the primary condition monitoring technique applied to detect failure modes, causes and effects in rolling element ball type bearings—while oil analysis is primarily used to monitor the lubricating oil properties. In the recent years, however, there is a trend toward using oil analysis in order to provide earlier detection of some failures of rolling element ball type bearings. This is particularly applicable to complex dynamic systems such as compressors, gearboxes and some gas turbines where obtaining vibration spectra and their analysis may be more difficult.1.1 This guide approaches oil analysis from a failure standpoint and includes both the rolling element ball type bearing wear and fluid deterioration in industrial application.1.2 This guide pertains to improving equipment reliability, reducing maintenance costs and enhancing the condition-based maintenance program primarily for industrial machinery by applying analytical methodology to oil analysis program for the purpose of detecting specific failure modes.1.3 This guide reinforces requirements for appropriate assembly, operation within the original design envelope as well as the need for condition-based and time-based maintenance.1.4 This guide covers the principles of Failure Mode and Effect Analysis (FMEA) as described in Guide D7874 and its relationship to rolling element ball type bearing wear in industrial application and its fluid deterioration.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method describes the design and use of various types of current meters. These current meters are commonly used to measure the velocity at a point in an open channel cross section as part of a velocity-area traverse to determine the flowrate of water. To this end it should be used in conjunction with Test Method D3858.1.1 This test method describes the design and use of cup-type or vane-type vertical axis current meters and propeller-type horizontal axis current meters for measuring water velocities in open channels.1.2 This test method is intended primarily for those meters customarily used in open-channel hydraulic (as distinguished from oceanographic) applications with an operator in attendance.1.3 This test method is intended primarily for current meters that measure one component or filament of flow.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

2.1 This standard is applicable to the calculation of stresses seen on a knee femoral component when loaded in a manner described in this test method. This method can be used to establish the worst-case size for a particular implant family. When stresses calculated using this method were compared to the stresses measured from physical strain gauging techniques performed at one laboratory, the results correlated to within 9%.1.1 This standard establishes requirements and considerations for the numerical simulation of metallic orthopaedic cemented and cementless total knee femoral components using Finite Element Analysis (FEA) techniques for the estimation of stresses and strains. This standard is only applicable to stresses below the yield strength, as provided in the material certification.1.2 Purpose—This test method establishes requirements and considerations for the development of finite element models to be used in the evaluation of metallic orthopaedic total knee femoral component designs for the purpose of prediction of the static implant stresses and strains. This procedure can be used for worst-case assessment within a family of implant sizes to provide efficiencies in the amount of physical testing to be conducted. Recommended procedures for performing model checks and verification are provided to help determine if the analysis follows recommended guidelines. Finally, the recommended content of an engineering report covering the mechanical simulation is presented.1.3 Limits—This document is limited in discussion to the static structural analysis of metallic orthopaedic total knee femoral components (which excludes the prediction of fatigue strength).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is useful for preparation of difficult-to-digest, primarily oils and oily wastes, specimens for trace element determinations of up to 28 elements by atomic absorption or plasma emission techniques. Specimen preparation by high-pressure ashing is primarily applicable to specimens whose preparation by EPA SW-846 protocols is either not applicable or not defined. This sample preparation practice is applicable for the trace element characterization of mixed oily wastes for use by waste treatment facilities such as incinerators or waste stabilization facilities.1.1 This practice covers a high-pressure, high-temperature digestion technique using the high-pressure asher (HPA) for preparation of oils and oily waste specimens for determination of up to 28 different elements by inductively coupled plasma-atomic emission plasma spectroscopy (ICP-AES), cold-vapor atomic absorption spectroscopy (CVAAS), and graphite furnace atomic absorption spectroscopy (GFAAS), inductively coupled plasma-mass spectrometry (ICPMS), and radiochemical methods. Oily and high-percentage organic waste streams from nuclear and non-nuclear manufacturing processes can be successfully prepared for trace element determinations by ICP-AES, CVAAS, and GFAAS. This practice is applicable to the determination of total trace elements in these mixed wastes. Specimens prepared by this practice can be used to characterize organic mixed waste streams received by hazardous waste treatment incinerators and for total element characterization of the waste streams.1.2 This practice is applicable only to organic waste streams that contain radioactivity levels that do not require special personnel or environmental protection from radioactivity or other acute hazards.1.3 A list of elements determined in oily waste streams is found in Table 1.1.4 This practice has been used successfully to completely digest a large variety of oils and oily mixed waste streams from nuclear processing facilities. While the practice has been used to report data on up to 28 trace elements, its success should not be expected for all analytes in every specimen. The overall nature of these oily wastes tends to be heterogeneous that can affect the results. Homogeneity of the prepared sample is critical to the precision and quality of the results.1.5 This practice is designed to be applicable to samples whose preparation practices are not defined, or not suitable, by other regulatory procedures or requirements, such as the U.S. Environmental Protection Agency (EPA) SW-846 and EPA-600/4-79-020 documents. This digestion practice is designed to provide a high level of accuracy and precision, but does not replace or override any regulatory requirements for sample preparation.1.6 This practice uses hazardous materials, operations, and equipment at high pressure (90 bars to 110 bars, 89 atm to 108 atm, or 1305 lb/in.2 to 1595 lb/in.2) and high temperatures, up to 320 °C, and therefore poses significant hazards if not operated properly.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7.1 Exception—Pressure measurements are given in lb/in. units.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 10.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This practice is applicable to the calculation of stresses seen on a femoral hip stem when loaded in a manner described in ISO 7206-4 (2010). This method can be used to establish the worst-case size for a particular implant. When stresses calculated using this practice were compared to the stresses measured from physical strain gauging techniques performed at two laboratories using two different methods, the results correlated to within 8 %.3.2 This test method can be used to estimate the effects of design variables on the stress and strain of metallic hip femoral stems in a set-up mimicking that described in ISO 7206-4 (2010).1.1 This practice establishes requirements and considerations for the numerical simulation of non-modular (that is, limited to monolithic stems with only a femoral head/trunnion taper interface) metallic orthopaedic hip stems using Finite Element Analysis (FEA) techniques for the estimation of stresses and strains. This standard is only applicable to stresses below the yield strength, as provided in the material certification.1.2 Purpose—This practice establishes requirements and considerations for the development of finite element models to be used in the evaluation of non-modular metallic orthopaedic hip stem designs for the purpose of prediction of the static implant stresses and strains. This procedure can be used for worst-case assessment within a series of different sizes of the same implant design to reduce the physical test burden. Recommended procedures for performing model checks and verification are provided to help determine if the analysis follows recommended guidelines. Finally, the recommended content of an engineering report covering the mechanical simulation is presented.1.3 Limits—This practice is limited in discussion to the static structural analysis of non-modular metallic orthopaedic hip stems (which excludes the prediction of fatigue strength).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test is a simple, effective way of determining the ability of bearings to roll freely. Most bearing manufacturers do not supply information on the breakaway friction coefficient of their products and if this is a design factor, users often buy candidate bearings and try them until they find one that appears to operate freer than the others. This test allows quantification of the breakaway friction characteristics of bearings. This test assesses the friction of a bearing as a tribosystem which includes its construction and lubrication. It has shown to correlate with use. If a bearing has a low breakaway angle in this test, its breakaway friction will be lower in service than the same size bearings that displayed a higher breakaway angle in this test.5.2 Breakaway friction of bearings is important in instruments where forces are light and the bearings are used as pivots rather than for continued rotation. Low friction is often imperative for proper device operation.5.3 Bearings with low breakaway friction are often sought for web handling rollers. Many rollers are driven only by tangential web contact and slippage can often damage the web. Low friction bearings are required.5.4 This test is useful for screening bearings for any applications where breakaway friction is a design concern.1.1 This test method is an extension of Test Method G164 and uses an inclined plane and a paperclip rider to detect the presence or absence of lubricants on the surfaces of flexible webs. A study to identify free spinning or low rolling friction bearings indicated that the paperclip friction test could be used for rolling friction by simply replacing the paperclip with a rolling element bearing on an axle. The angle of the inclined plane at initiation of rolling is the breakaway angle. This test method can be used to measure the angle at breakaway of small diameter (up to 100 mm outside diameter) rolling element bearings. The bearings that have been tested in the development of this method are conventional ball bearings with different separators, seals, and different conditions of lubrication (none, oil, greases, and so forth), but there is no technical reason why this test method would not work with bearings of other design, including plain bearings. Rolling element bearings like any sliding system can have friction characteristics at breakaway that are different than rolling continuously. As is the case with most inclined plane friction tests, the test only produces the friction characteristic at the onset of measurable rolling, using the angle (θ) when measurable rolling commences. The objective of this test is an assessment of breakaway rolling friction characteristics to assist machine designers in the selection of rolling element bearings for instrument pivots and the like where breakaway friction is a concern.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This classification identifies and hierarchically arranges the work elements, activities, and tasks required for environmental projects. This classification increases the level of communication and allows for more effective exchange of cost and performance data between environmental projects.4.2 This classification defines environmental work elements as major components of environmental projects. It is the common thread linking activities and participants in an environmental project from initial planning through operations and maintenance, D&D, and SLTM.4.3 The users of ECES include program and project managers, cost estimators, and cost analysts in both the public and private sector.4.4 This classification uses an increased level of standardization, uniformity, and consistency that provides a common basis for comparing, analyzing, and calibrating cost data. This classification can also be used as a checklist of project activities to be completed.4.5 Use this classification when:4.5.1 Developing a company-specific Code of Accounts (COAs) for capturing and reporting cost early in the project development for more effective project controls and management. COA is a logical breakdown of a project into controllable elements for the purpose of cost collection, control, and reporting. COA is organized at lower detailed levels that summarize to higher levels and is company or site, or both, and project-specific.4.5.2 Developing a work breakdown structure (WBS) early in the project development for proper management of the project. The WBS provides a framework for managing the cost, schedule, and performance objectives of a project. This framework allows the project to be separated into logical components and makes the relationship of the components clear. The WBS defines the project in terms of hierarchically related action and product-oriented elements. Each element provides logical summary points for assessing technical accomplishments and for measuring cost and schedule performance.4.5.3 Supporting programs and project functions. Use ECES for bid solicitation, collection, and evaluation; communicating project data between installations or agencies and industry; cost and schedule estimating; historical cost and schedule data collection; historical project data collection for technology deployments and project conditions; validating and calibrating cost estimates and software tools; and establishing and disseminating best practices and lessons learned.4.6 The hierarchical nature of the classification allows for collecting data using more detailed lower level elements or for summarizing data at higher levels.4.7 ECES, as described in this classification, is being included in the Remedial Action Cost Estimating Requirement (RACER)6 system and the Environmental Cost Analysis System (ECAS).7 RACER is used for estimating cost and ECAS is used to collect, maintain, and analyze the cost of completed projects. Federal agencies performing environmental work intend to incorporate the ECES.1.1 This standard establishes a classification of the comprehensive hierarchical list of elements for life-cycle environmental work. The classification is based on the Interagency Environmental Cost Element Structure (ECES).2 Elements, as defined here, are major components common to environmental projects.3 The elements represent the life-cycle activities for environmental projects regardless of the project design specification, construction method, technology type, or materials used. The classification serves as a consistent reference for cost estimating, analysis, and monitoring during the various phases of the project life cycle. Using ECES ensures consistency, over time and from project to project, in the cost management and performance measurement of environmental projects. It also enhances reporting at all phases of a project, from assessment and studies through design, construction, operations and maintenance (O&M), and surveillance and long-term monitoring (SLTM).1.2 This classification applies to all environmental work, including environmental restoration, waste management, decontamination and decommissioning (D&D), surveillance and long-term monitoring, and technology development.1.3 The use of this classification increases the level of standardization, uniformity, and consistency of collected environmental project costs. Such uniformity and standardization allows for ease of understanding project costs, provides a common “cost language” for sharing and comparing cost information, and allows for easier analysis and calibration of cost data. This standard classification can be used as a checklist of activities to be completed in environmental projects.1.4 Guide E2637 is intended to facilitate the application of the ECES to any environmental remediation project, without regard to project size.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
18 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页