微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 The maintenance of confidentiality in paper-based, electronic, or computer-based health information requires that policies and procedures be in place to protect confidentiality. Confidentiality of information depends on structural and explicit mechanisms to allow persons or systems to define who has access to what, and in what situation that access is granted. For guidelines on the development and implementation of privilege management infrastructures supporting these mechanisms, see Guide E2595.4.2 Confidential protection of data elements is a specific requirement. The classification of data elements into restrictive and specifically controlled categories is set by policies, professional practice, and laws, legislation, and regulations.4.3 There are three explicit concepts upon which the use of and access to health information confidentiality are defined. Each of these concepts is an explicit and unique characteristic relevant to confidentiality, but only through the combination (convergence) of all three concepts can appropriate access to an explicit data element at a specific point in time be provided, and unauthorized access denied. The three concepts are:4.3.1 The categorization and breakdown of data into logical and reasonable elements or entities.4.3.2 The identification of individual roles or job functions.4.3.3 The establishment of context and conditions of data use at a specific point in time, and within a specific setting.4.4 The overriding principle in preserving the confidentiality of information is to provide access to that information only under circumstances and to individuals when there is an absolute, established, and recognized need to access that data, and the information accessed should itself be constrained only to that information essential to accomplish a defined and recognized task or process. Information nonessential to that task or process should ideally not be accessible, even though an individual accessing that information may have some general right of access to that information.1.1 This guide covers the process of granting and maintaining access privileges to health information. It directly addresses the maintenance of confidentiality of personal, provider, and organizational data in the healthcare domain. It addresses a wide range of data and data elements not all traditionally defined as healthcare data, but all elemental in the provision of data management, data services, and administrative and clinical healthcare services. In addition, this guide addresses specific requirements for granting access privileges to patient-specific health information during health emergencies.1.2 This guide is based on long-term existing and established professional practices in the management of healthcare administrative and clinical data. Healthcare data, and specifically healthcare records (also referred to as medical records or patient records), are generally managed under similar professional practices throughout the United States, essentially regardless of specific variations in local, regional, state, and federal laws regarding rules and requirements for data and record management.1.3 This guide applies to all individuals, groups, organizations, data-users, data-managers, and public and private firms, companies, agencies, departments, bureaus, service-providers, and similar entities that collect individual, group, and organizational data related to health care.1.4 This guide applies to all collection, use, management, maintenance, disclosure, and access of all individual, group, and organizational data related to health care.1.5 This guide does not attempt to address specific legislative and regulatory issues regarding individual, group, and organizational rights to protection of privacy.1.6 This guide covers all methods of collection and use of data whether paper-based, written, printed, typed, dictated, transcribed, forms-based, photocopied, scanned, facsimile, telefax, magnetic media, image, video, motion picture, still picture, film, microfilm, animation, 3D, audio, digital media, optical media, synthetic media, or computer-based.1.7 This guide does not directly define explicit disease-specific and evaluation/treatment-specific data control or access, or both. As defined under this guide, the confidential protection of elemental data elements in relation to which data elements fall into restrictive or specifically controlled categories, or both, is set by policies, professional practice, and laws, legislation and regulations.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Two general types of tables (Note 1) are given, one based on the concept of lot tolerance, LTPD, and the other on AOQL. The broad conditions under which the different types have been found best adapted are indicated below.4.1.1 For each of the types, tables are provided both for single sampling and for double sampling. Each of the individual tables constitutes a collection of solutions to the problem of minimizing the over-all amount of inspection. Because each line in the tables covers a range of lot sizes, the AOQL values in the LTPD tables and the LTPD values in the AOQL tables are often conservative.NOTE 1: Tables in Annex A1 – Annex A4 and parts of the text are reproduced by permission of John R. Wiley and Sons. More extensive tables and discussion of the methods will be found in that text.4.2 The sampling tables based on lot quality protection (LTPD) (the tables in Annex A1 and Annex A2) are perhaps best adapted to conditions where interest centers on each lot separately, for example, where the individual lot tends to retain its identity either from a shipment or a service standpoint. These tables have been found particularly useful in inspections made by the ultimate consumer or a purchasing agent for lots or shipments purchased more or less intermittently.4.3 The sampling tables based on average quality protection (AOQL) (the tables in Annex A3 and Annex A4) are especially adapted for use where interest centers on the average quality of product after inspection rather than on the quality of each individual lot and where inspection is, therefore, intended to serve, if necessary, as a partial screen for defective pieces. The latter point of view has been found particularly helpful, for example, in consumer inspections of continuing purchases of large quantities of a product and in manufacturing process inspections of parts where the inspection lots tend to lose their identity by merger in a common storeroom from which quantities are withdrawn on order as needed.4.4 The plans based on average quality protection (AOQL) consider the degree to which the entire inspection procedure screens out defectives in the product submitted to the inspector. Lots accepted by sample undergo a partial screening through the elimination of defectives found in samples. Lots that fail to be accepted by sample are completely cleared of defectives. Obviously, this requires a nondestructive test. The over-all result is some average percent defective in the product as it leaves the inspector, termed the average outgoing quality, which depends on the level of percent defective for incoming product and the proportion of total defectives that are screened out.4.5 Given a specific problem of replacing a 100 % screening inspection by a sampling inspection, the first step is to decide on the type of protection desired, to select the desired limit of percent defective lot tolerance (LTPD) or AOQL value for that type of protection, and to choose between single and double sampling. This results in the selection of one of the appended tables. The second step is to determine whether the quality of product is good enough to warrant the introduction of sampling. The economies of sampling will be realized, of course, only insofar as the percent defective in submitted product is such that the acceptance criteria of the selected sampling plan will be met. A statistical analysis of past inspection results should first be made, therefore, in order to determine existing levels and fluctuations in the percent defective for the characteristic or the group of characteristics under consideration. This provides information with respect to the degree of control as well as the usual level of percent defective to be expected under existing conditions. Determine a value from this and other information for the process average percent defective that should be used in applying the selected sampling table, if sampling is to be introduced.AbstractThis practice is primarily a statement of principals for the guidance of ASTM technical committees and others in the use of average outgoing quality limit, AOQL, and lot tolerance percent defective, LTPD, sampling plans for determining acceptable of lots of product. Two general types of tables are given, one based on the concept of lot tolerance, LTPD, and the other on AOQL. For each of the types, tables are provided both for single sampling and for double sampling. Each of the individual tables constitutes a collection of solutions to the problem of minimizing the over-all amount of inspection.1.1 This practice is primarily a statement of principals for the guidance of ASTM technical committees and others in the use of average outgoing quality limit, AOQL, and lot tolerance percent defective, LTPD, sampling plans for determining acceptable of lots of product.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

3.1 The cloud point temperature is a reproducible characteristic of certain pure nonionic surfactants. It is also characteristic of certain nonionic surfactant formulated systems. This test method is appropriate for both systems.NOTE 1: If the transition from a distinctly cloudy to a clear solution is not sharp, that is, if it does not take place within a range of 1 °C, this test method is not appropriate.1.1 This test method covers a procedure to determine the “cloud point” of nonionic surfactants or detergent systems. Cloud Point is the temperature at which dissolved components (solids or liquids) are no longer completely soluble, precipating as a second phase giving the fluid a cloudy appearance. It is limited to those surfactants and detergent systems for which the visible solubility change occurs over a range of 1 °C or less at concentrations of 0.5 % to 1.0 % in DI water between 30 °C and 95 °C.1.2 Chemical Limitations—Nonionic surfactants that exhibit a characteristic cloud point in general terms consist of a water-in-soluble moiety condensed with 50 % to 75 % by weight of ethylene oxide. If the level of ethoxylation is too low the surfactant may not be water soluble at temperatures less than 30 °C, and if it is too high no cloud point may exist.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The deformation and end point of a cone corresponds to a certain heat-work condition due to the effects of time, temperature, and atmosphere.5.2 The precision of this test method is subject to many variables that are difficult to control. Therefore, an experienced operator may be necessary where PCE values are being utilized for specification purposes.5.3 PCE values are used to classify fireclay and high-alumina refractories.5.4 This is an effective method of identifying fireclay variations, mining control, and developing raw material specifications.5.5 Although not recommended, this test method is sometimes applied to materials other than fireclay and high alumina. Such practice should be limited to in-house laboratories and never be used for specification purposes.1.1 This test method covers the determination of the pyrometric cone equivalent (PCE) of fire clay, fireclay brick, high-alumina brick, and silica fire clay refractory mortar by comparison of test cones with standard pyrometric cones under the conditions prescribed in this test method.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.2.1 Exceptions—Certain weights are in SI units with inch-pound in parentheses. Also, certain figures have SI units without parentheses. These SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice describes the procedures involved in the structural reinforcement, sealing, protection, and rehabilitation of sanitary sewer manholes by the application of a prepackaged protective cementitious liner system to all cleaned interior surface from the bottom of the frame to the bench. The manholes to which the cementitious liner shall be applied may be made of brick, concrete, block, and various other materials. Detailed descriptions are given for all prepackaged materials necessary for this practice that include materials for substrate repairs, cementitious repair materials, infiltration water control materials, cementitious water control materials, chemical grout materials, and lining materials. Detailed descriptions are also provided for each procedure involved here which includes surface preparation, high pressure cleaning, surface repair, mixing of prepackaged cementitious repair materials, spray application of the cement liner by manual surface sealing or centrifugal cast process, and curing of the freshly applied cementitious mortar.1.1 This specification describes all the work required to structurally reinforce, seal, and protect sanitary sewer manholes. Applications include applying a prepackaged cementitious liner that can function as a full depth restoration or a partial depth repair. A uniform high-strength, fiber-reinforced cementitious mortar should be manually sprayed and hand troweled or centrifugally cast in a uniform, prescribed thickness to all cleaned, interior surfaces from the bottom of the frame to the bench. The cementitious liner may be applied to manholes constructed of brick, concrete, block, and various other materials.1.2 A manufacturer’s approved applicator shall furnish the complete application of the protective, prepackaged cementitious liner material. All of the cleaning, preparation, and application procedures shall be in accordance with the manufacturer’s recommendations.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Manholes are permit required confined spaces in accordance with OSHA definition and should be treated as such, requiring confined space entry permits, appropriate monitoring equipment, and the associated personal protective equipment.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers aluminum and aluminum-alloy tubes made from formed sheet and seam welded by continuous methods. Chemical conformance shall be determined by analyzing samples taken at a time the ingots are poured, or samples taken from the finished or semi-finished product, following conditions set in the specification. The temper of the tubes shall be that of the sheet from which the tubes are formed, and the sheet shall conform to the specified tensile property requirements. The tube shall be subjected to tension, capability, and pressure tests.1.1 This specification covers aluminum and aluminum-alloy tubes made from formed sheet and seam welded by continuous methods.1.2 Alloy (Note 1) and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E527.Note 1—Throughout this specification use of the term alloy in the general sense includes aluminum as well as aluminum alloy.Note 2—For the requirements for sheet see Specification B209.1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see A1.2.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4.1 SI Units—The SI units are shown either in brackets or in separate tables.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method separates asphalts into four well-defined fractions. Analysis of these fractions can be used to evaluate asphalt composition (1, 2).4 For example, one can compare the ratios of the fractions with other asphalt systems to evaluate processing and aging parameters that relate to performance properties of the asphalt.1.1 This test method covers the separation of four defined fractions from petroleum asphalts. The four fractions are defined as saturates, naphthene aromatics, polar aromatics, and iso-octane insoluble asphaltenes. This method can also be used to isolate saturates, naphthene aromatics, and polar aromatics from distillate products such as vacuum gas oils, lubricating oils, and cycle stocks. These distillate products usually do not contain asphaltenes.1.2 The values stated in SI units are to be regarded as standard.1.3 Since a precision estimate for this standard has not been developed, this test method is to be used for research or informational purposes only. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D4416-09(2023) Standard Specification for Acrylic Acid Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers glacial acrylic acid (99.0% grade) for use in paint, varnish, lacquer and related products. The properties of the material shall be determined in accordance with the following test methods: purity; water; color; inhibitor; and dimer.1.1 This specification covers glacial acrylic acid2 (99.0 % grade) for use in paint, varnish, lacquer and related products.1.2 The following applies to all specified limits in this standard; for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 For hazard information and guidance, see the supplier’s Safety Data Sheet.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 These criteria cover thermoset plastics based on diglycidyl ethers of bisphenol A (DGEBPA) and appropriate curing agents or catalysts as opposed to thermoplastics based on epoxy structures.1.2 These criteria are generic and are intended to provide definitions and a standard description of epoxy plastics used in implantable devices. It is also intended to serve as a standard guide for the preparation of more specific documents with values and limits covering specific end uses.1.3 Compliance with these criteria shall not be construed as an endorsement of implantability. The biocompatibility of epoxy plastics as a class has not been established. Epoxy plastic is a generic term relating to the class of polymers formed from epoxy resins, certain curing agents or catalysts, and various additives. Since many compositions and formulations fall under this class, it is essential that the formulator or fabricator ensure biocompatibility of the specific composition or formulation in its intended end use. Since these criteria provide guidance for the preparation of more specific documents covering specific end uses, these documents will provide bases for standardized evaluation of biocompatibility appropriate for a specific end use.1.4 Each of the properties listed shall be considered in selecting materials for specific end uses. A list of selected properties with limiting values assigned is suggested for separate product specifications.1.5 All of the properties and test methods listed may not be pertinent in any specific situation, nor may all of the tests outlined be required.1.6 These criteria are limited to functionally or fully cured epoxy plastics. Uncured or incompletely cured formulations are specifically excluded.1.7 The epoxy plastics covered by this standard are those to be evaluated for use in implantable biomedical devices. The term implantable is herein considered to include devices used in vivo for time periods in excess of 30 days.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Abrasion resistance during transport and storage is essential to prevent marring of type matter, designs, or protective coatings on the exterior of labels and other printed materials. Recognizing that the actual amount of abrasion occurring in the field depends on relative humidity, temperature, tightness of packing, and a host of other variables, this test method provides a rapid means for comparing the abrasion resistance of test surfaces under laboratory conditions. It is useful for specification acceptance between the supplier and the customer.5.2 This test method can also be used to evaluate the relative abrasion resistance of printed inks, varnishes, laminates and substrates, and the abrasiveness of inks.1.1 This test method covers the procedure for determining the abrasion resistance of printed matter using a GA-CAT Comprehensive Abrasion Tester.1.2 This test method is applicable to packaging labels, book, catalog, and magazine covers, bar codes, corrugated boxes, and other containers having applied graphics on any flat substrate. It is not recommended for powder coatings.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers heavy-duty ranges that use gas or electrical heat sources, or both, for cooking food in the commercial and institutional food service establishments. Types: type I-electric range top with electric oven; type I-electric range top with gas-fired oven; type I-electric range top with storage base; type II-gas-fired range top with gas-fired oven; type II-gas-fired range top with electric oven; and type II-gas-fired range top with storage base. Electric ovens: electric standard oven and electric convection oven. Power: natural gas, propane, manufactured gas, and other gases. All ranges shall be provided with means to regulate the oven interior temperature and cook top burner heat. Oven thermostat test shall be performed to meet the requirements prescribed.1.1 This specification covers heavy-duty ranges that use gas or electrical heat sources, or both, for cooking food in the commercial and institutional food service establishments.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

Many important properties of crosslinked ethylene plastics vary with the gel content. Hence, determination of the gel content provides a means of both controlling the process and rating the quality of finished products.Extraction tests permit verification of the desired gel content of any given crosslinked ethylene plastic and they also permit comparison between different crosslinked ethylene plastics, including those containing fillers, provided that, for the latter, the following conditions are met: The filler is not soluble in xylene or toluene at the extraction temperature and the amount of filler present in the compound is known or can be determined.Sufficient crosslinking has been achieved to prevent migration of filler during the extraction. Usually it has been found that, at extraction levels up to 50 %, the extraction solvent remains clear and free of filler.Since some oxidative degradation of the material can occur at the extraction temperatures used in this procedure, despite the use of a closed cell which allows for minimal introduction of oxygen, a suitable antioxidant is added to the solvent to inhibit such degradation.Before proceeding with this method, reference should be made to the specification of the material being tested. Any test specimen preparation, conditioning, dimensions, or testing parameters, or combination thereof, covered in the materials specification shall take precedence over those mentioned in this test method. If there are no material specifications, then the default conditions apply1.1 The gel content of crosslinked ethylene plastics is determined by solvent extraction with xylene or toluene. This test method is applicable to ethylene plastics of all densities, including those containing fillers; provided the fillers are insoluble in the extraction solvent(s).1.2 This test method uses pressurized liquid extraction (PLE) to increase the speed and reduce the amount of solvent required for solvent extraction. The results of this method are similar to Test Method D2765.1.3 Extraction tests shall be performed on samples of any shape (see 7.2). Specimens shall be selected from those portions of the article most susceptible to insufficient crosslinking or selected from portions representative of the entire article. This test method has been developed for production and quality control of crosslinked polyethylene pipe but may be applicable to other products such as multilayer materials and fibers.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This method makes use of minimal reagents and allows for solvent recovery and re-use. Due to the use of minimal reagents, health and safety concerns are minimized in comparison to other methods.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Specific precautionary statements are given in Section 10.Note 1—There is no known ISO equivalent to this test method. This test method is similar to Test Method D2765.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM C1362-09 Standard Test Method for Flow of Freshly Mixed Hydraulic Cement Concrete (Withdrawn 2014) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

This test method permits a rapid assessment of the flow and consistency of freshly mixed concrete (see Note 1).This test method also provides information on the change in flow and consistency, with time, of concrete containing superplasticizer admixtures.This test method can be used to measure the uniformity characteristics of flow and consistency of freshly mixed concrete and its change with time.Note 1—This test method may not be appropriate for use in evaluating gap-graded aggregate concrete.1.1 This test method covers determination of the flow of a sample of freshly mixed concrete, either in the field or in the laboratory.1.2 This test method is applicable to concrete having coarse aggregate up to 37.5 mm in size. If the coarse aggregate is larger than 37.5 mm in size, the test method is applicable when the fraction of concrete larger than 37.5 mm is removed in accordance with Practice C 172.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes that provide explanatory information. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure. )

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This practice details the standard procedure for evaluating the resistance of prestressed prepainted metal panels to cracking, or loss of adhesion, or both, after accelerated heat aging by dry heat test. This test method requires the use of gravity or forced air laboratory oven, bench vise, bending dies or test shims, 10x magnifier, and adhesive tape.1.1 This practice can be used to evaluate the resistance of a prestressed prepainted metal panel to cracking, or loss of adhesion, or both, after accelerated heat aging. Most coil coated products are formed and bent into specific shapes to produce a final product. These operations introduce stresses, which may be relieved by cracking of the coating after aging.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The major portion of carbon black consumed by the rubber industry is used to improve the physical properties, life expectancy, and utility of rubber products. These test methods provide a natural rubber formulation and directions for evaluating carbon black intended for use in rubber products.3.2 These test methods may be used to characterize carbon black in terms of specific properties of the standard compound. These test methods are useful for the quality assurance of carbon black production. They may also be used for the preparation of reference compounds, to confirm the day-to-day reliability of testing operations used in the rubber industry, for the evaluation of experimental compounds, and quality control of production compounds.1.1 These test methods cover the standard materials, test formulation, mixing procedure, and test methods for the evaluation and production control of carbon blacks in natural rubber (NR).1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
221 条记录,每页 15 条,当前第 1 / 15 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页