微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Petroleum-based diesel may be blended with biodiesel. High levels of free glycerin in biodiesel can cause injector deposits (“gel effect”), as well as clogging fuel systems. High levels of unreacted glycerides can cause injector deposits and can adversely affect cold weather operation and filter plugging.1.1 This test method covers and describes an anion exchange chromatography procedure for determining free and total glycerin content of biodiesel (B100) and blends (B0 to B20) with diesel fuel oils defined by Specification D975 Grades 1-D, 2-D, and low sulfur 1-D and 2-D and Specification D6751 (for B100 feedstocks). It is intended for the analysis of biodiesel and blend samples containing between 0.5 mg/kg to 50 mg/kg glycerin.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Resins used in demineralization systems may deteriorate due to many factors including chemical attack, fouling by organic and inorganic materials, mishandling, or the effects of aging. Detection of degradation or fouling may be important in determining the cause of poor demineralizer performance.1.1 This guide presents a series of tests and evaluations intended to detect fouling and degradation of particulate ion exchange materials. Suggestions on reducing fouling and on cleaning resins are given.1.2 This guide is to be used only as an aid in the evaluation of particulate ion exchange material performance and does not purport to address all possible causes of unsatisfactory performance. The evaluations of mechanical and operational problems are not addressed.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The presence of 4-CBA and p-TOL in PTA used for the production of polyester is undesirable because they can slow down the polymerization process, and 4-CBA is also imparting coloration to the polymer due to thermal instability.4.2 Determining the amount of 4-CBA and p-TOL remaining from the manufacture of PTA is often required. This test method is suitable for setting specifications and could be used as an internal quality control tool where these products are produced or are used.1.1 This test method2 covers the determination of the 4-Carboxybenzaldehyde (4-CBA) and p-Toluic acid (p-TOL) in purified terephthalic acid (PTA) by weak anion exchange high performance liquid chromatography (HPLC). This method is applicable for 4-CBA from 2 to 500 mg/kg and for p-TOL from 10 to 500 mg/kg, respectively.1.2 In determining the conformance of the test results using this method to applicable specification, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Uranium and plutonium are used in nuclear reactor fuel and must be analyzed to insure that they meet certain criteria for isotopic composition as described in Specifications C833 and C1008. This practice is used to chemically separate the same mass peak interferences from uranium and plutonium and from other impurities prior to isotopic abundance determination by thermal ionization mass spectrometry.5.2 In those facilities where perchloric acid use is tolerated, the separation in Test Method C698 may be used prior to isotopic abundance determination. Uranium and plutonium concentrations as well as isotopic abundances using thermal ionization mass spectrometry can be determined using this separation and following Test Method C1625.1.1 This practice is for the ion exchange separation of uranium and plutonium from each other and from other impurities for subsequent isotopic analysis by thermal ionization mass spectrometry. Plutonium-238 and uranium-238, and plutonium-241 and americium-241, will appear as the same mass peak and must be chemically separated prior to analysis. Only high purity solutions can be analyzed reliably using thermal ionization mass spectrometry.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This  practice  is  applicable  when  small amounts of 241Am are present in plutonium samples (see Test Methods C758 and C759). An example is the determination of 241Am in a 238Pu sample. The high specific activity of 238Pu presents a safety hazard that precludes its presence in a counting facility. Therefore, it is necessary to remove the 238Pu prior to the determination of 241Am. 4.2 When a plutonium solution contains fission or activation products, this practice does not separate all radionuclides that interfere in the determination of 241Am, such as the rare earths. 1.1 This practice describes the use of an ion exchange technique to separate plutonium from solutions containing low concentrations  of americium  prior  to measurement of the 241Am by gamma counting. 1.2 This practice covers the removal of plutonium, but not all the other radioactive isotopes that may interfere in the determination of 241Am. 1.3 This practice can be used when 241Am is to be determined in samples in which the plutonium is in the form of metal, oxide, or other solid provided that the solid is appropriately sampled and dissolved (See Test Methods C758, C759, and C1168). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice can be used to evaluate unused oxygen removal ion exchange cartridges for conformance to specifications.5.2 This practice provides for the calculation of capacity in terms of the volume of water treated to an end point level of dissolved oxygen.5.3 The practice as written assumes that the oxygen removal ion exchange resins in the cartridge are either partially or fully regenerated. Regeneration of the resins is not part of this practice.5.4 This practice provides for the calculation of capacity on a cartridge basis.5.5 This practice may be used to test different size oxygen removal resin cartridges. The flow rate of test water and the frequency of sampling are varied to compensate for the approximate volume of resin in the test cartridge.1.1 This practice covers the determination of the performance of oxygen removal ion exchange resin cartridges in the regenerated form when used for removing dissolved oxygen from water. The test can be used to determine the initial capacity of unused cartridges or the remaining capacity of used cartridges. In this case, performance is defined as oxygen removal capacity (or throughput) to a defined endpoint.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

7.1 The particle size distribution of powdered ion exchange resins and, more importantly, the derived parameters of mean particle size and percent above and below specified size limits are useful for determining batch to batch variations and, in some cases, can be related to certain aspects of product performance.7.2 Although automatic multichannel particle size analyzers, of the type described in Section 9, yield information on the entire distribution of sizes present in a given sample, it has been found that, for this application, the numerical value of three derived parameters may adequately describe the particle size characteristics of the samples: the mean particle diameter (in micrometres), the percent of the sample that falls below some size limit, and the percent of the sample that falls above some size limit.1.1 These test methods cover the determination of the physical and chemical properties of powdered ion exchange resins and are intended for use in testing new materials. The following test methods are included:  SectionsTest Method A—Particle Size Distribution 5 to 15Test Method B—Solids Content 16 to 231.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This guide specifies the format for representing and sharing information about nanomaterials, small molecules and biological specimens along with their assay characterization data using spreadsheet or TAB-delimited files. It is intended to facilitate the meaningful submission and exchange of nanomaterial descriptions and characterization data (metadata and summary data) along with the other files (raw/derived data files, image files, protocol documents, etc.) among individual researchers and to or from nanotechnology resources. It also provides researchers with guidelines for representing nanomaterials and characterizations to achieve cross-material comparison.1.1 This guide (ISA-TAB-Nano) specifies the format for representing and sharing information about nanomaterials, small molecules and biological specimens along with their assay characterization data (including metadata, and summary data) using spreadsheet or TAB-delimited files.1.2 The Appendices Sections contain a detailed listing of ISA-TAB-Nano fields (Appendix X1), a practical example (Appendix X2), a discussion of optional files (Appendix X3), and summary of background (Appendix X4).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method can be used on plutonium matrices in nitrate solutions.5.2 This test method has been validated for all elements listed in Test Methods C757 except sulfur (S) and tantalum (Ta).5.3 This test method has been validated for all of the cation elements measured in Table 1. Phosphorus (P) requires a vacuum or an inert gas purged optical path instrument.1.1 This test method covers the determination of 25 elements in plutonium (Pu) materials. The Pu is dissolved in acid, the Pu matrix is separated from the target impurities by an ion exchange separation, and the concentrations of the impurities are determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).1.2 This test method is specific for the determination of impurities in 8 M HNO3 solutions. Impurities in other plutonium materials, including plutonium oxide samples, may be determined if they are appropriately dissolved (see Practice C1168) and converted to 8 M HNO3 solutions.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions that are provided for information only and are not considered standard. Additionally, the non-SI units of molarity and centimeters of mercury are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 9 on Hazards.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is intended to evaluate changes in the performance of ion exchange resins used in mixed beds operating as polishing systems for solutions of low ionic strength, typically, <10 mg/L dissolved solids, that are intended to produce very high purity effluents. It is recommended that when new resins are installed in a plant it be used to provide a base line against which the future performance of that resin can be judged.5.2 The conditions of this test must be limiting kinetically, such that kinetic leakage, and not equilibrium leakage, is tested. This leakage is influenced by a combination of influent flow velocity and concentration, as well as bed depth.5.3 It is recommended that the practice be followed with the resin ratio, flow rate, and influent quality as indicated. The design of the apparatus permits other variations to be used that may be more appropriate to the chemicals used in a specific plant and the nature of its cooling water, but the cautions and limitations noted in the practice must be accommodated.5.4 It is possible that the cation resin could experience kinetics problems. In many cases, however, the anion resins are more likely to experience the types of degradation or fouling that could lead to impaired kinetics. Testing of field anion and cation resins together is an option, especially when historic data on the mixed bed will be compiled. Recognize, however, that many variables can be introduced, making it difficult to interpret results or to compare to historical or new resin data on separate components.5.5 Provision is made for calculation of the mass transfer coefficient in the Appendix X1. When such calculation is to be made, a full wet sieve analysis, as described in Test Methods D2187, also is required. Electronic particle sizing may be substituted if it is referenced back to the wet sieve method.5.6 This practice is intended to supplement, not displace, other indicators of resin performance, such as exchange capacity, percent regeneration, and service experience records.1.1 This practice is intended to evaluate changes in kinetic performance of ion exchange resins used in mixed beds to produce high purity water. Within strict limitations, it also may be used for comparing resin of different types. This standard does not seek to mimic actual operating conditions. Specific challenge solutions and conditions are specified. At the option of the user, other conditions may be tested.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

7.1 The ionic form of an ion-exchange material affects both its equivalent mass and its equilibrium water content. These in turn influence the numerical values obtained in exchange capacity determinations, in density measurements, and in the size of the particles. To provide a uniform basis for comparison, therefore, the sample should be converted to a known ionic form before analysis. This procedure provides for the conversion of cation-exchange materials to the sodium form and anion-exchange materials to the chloride form prior to analysis. These forms are chosen since they permit samples to be weighed and dried without concern for air contamination or decomposition. If other ionic forms are used this fact should be noted in reporting the results.1.1 These test methods cover the determination of the physical and chemical properties of ion-exchange resins when used for the treatment of water. They are intended for use in testing both new and used materials. The following thirteen test methods are included:  SectionsTest Practice A—Pretreatment  6 – 10Test Method B—Water Retention Capacity 11 – 18Test Method C—Backwashed and Settled Density 19 – 26Test Method D—Particle Size Distribution 27 – 35Test Method E—Salt-Splitting Capacity of Cation-Exchange Resins 36 – 45Test Method F—Total Capacity of Cation-Exchange Resins 46 – 55Test Method G—Percent Regeneration of Hydrogen-Form Cation-Exchange Resins 56 – 64Test Method H—Total and Salt-Splitting Capacity of Anion-Exchange Resins 65 – 73Test Practice I—Percent Regeneration of Anion Exchange Resins 74 – 82Test Practice J—Ionic Chloride Content of Anion-Exchange Resins 83 – 90Test Method K—Carbonate Content of Anion-Exchange Resins 91 – 99Test Method L—Sulfate Content of Anion Exchange Resins 100 – 108Test Practice M—Total Anion Capacity of Anion-Exchange Resins  109 – 1171.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 10.8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

9.1 Cation exchange materials are frequently used in the sodium form to exchange divalent and trivalent ions in the influent water for sodium ions on the resin sites. This process is commonly referred to as softening water since it removes those ions that form a “hard” curd of insoluble salts with the fatty acids used in some soaps and that also precipitate when water is boiled. In such a process, sodium chloride is used as the regenerant to return the cation-exchanging groups to the sodium form.9.2 This test method is intended to simulate the performance of such materials in actual usage. It may be used either to compare the performance of new materials or to compare the performance of a material that has been used with its original performance.9.3 Regenerant concentrations and dosages used herein are typical for the types of materials used in this application. If different concentrations or amounts of regenerant are agreed upon by parties using this test method, this fact should be stated when the results are reported. Similarly, the test water specified is the agreed upon standard. Where other test waters or the water to be treated are used in the test, the analysis of the water in terms of total solids, sodium, calcium, magnesium, other di- or trivalent metals as well as the major anions present should be reported with the test results.1.1 These test methods cover the determination of the operating capacity of particulate cation-exchange materials when used for the removal of calcium, magnesium, and sodium ions from water. It is intended for use in testing both new and used materials. The following two test methods are included:  SectionsTest Method A—Sodium Cycle  8 to 14Test Method B—Hydrogen Cycle 15 to 211.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM G135-95(2019) Standard Guide for Computerized Exchange of Corrosion Data for Metals (Withdrawn 2023) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

4.1 This guide establishes a formalism for transferring corrosion test data between computer systems in different laboratories. It will be used by standards developers to specify the format of files containing test results.4.2 This guide defines a generic approach to structuring data files. It will be used by software developers to create programs which read and write these files.4.3 Each standard test procedure will define a unique data file derived from this guide. Each time a standard test is performed, the results can be summarized in a data file specific to that test.4.4 Some experimental information will be global, that is, common to several standards, and will be contained in Guide G107 and other global data dictionaries. Other information will be local, that is, unique to a given standard, and will be defined in that standard.1.1 This guide covers the techniques used to encode corrosion of metals test results for exchange between computer systems.1.2 Guidelines are given for creating a data exchange appendix for each ASTM corrosion of metals standard.1.3 Instructions are given for creating data translation software from the contents of the data exchange appendix.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

One of the major factors in the unsatisfactory performance of anion exchange resins is their fouling by organic material. Knowledge of the degree of fouling can be used to assess the condition of the resin and may indicate the need for pretreatment of the influent, remedial cleaning procedures, or resin replacement.It is recognized that this test method may not remove and detect cation sloughage products or declumping agents. It is not intended to remove all organic compounds from the resin.Since the chemical structures of organics compounds fouling the resin are generally unknown and are expressed only on the basis of their carbon content, interpretation of test results to form a basis for predictions for resin performance or cleaning procedures should be approached with caution.Samples may be taken before or after plant regeneration, or both, depending on the type of information desired. This decision is left to the judgment of the user.1.1 This test method provides a general estimate of the organic fouling of an anion exchange resin based upon total organic carbon measurements.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see 8.3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This specification covers the basic data formats to be used by search and rescue computer applications programs (software) for import from and export to other programs.1.2 Additional data or word processing formats may be supported by search and rescue programs.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
31 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页