微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification deals with the standard requirements for premium quality alloy steel semifinished rolled or forged blooms and billets for reforging into aircraft and aerospace critical parts such as landing-gear forgings. Covered here are three basic classifications of steel, namely: Class I, steel manufactured by vacuum-induction melting or consumable-electrode vacuum melting process; Class II, air-melted steel manufactured by electric-furnace vacuum degassing process; Class III, air-melted steel manufactured by electric-furnace ladle refining and vacuum degassing processes. Steel materials shall be heat-treated and hot-worked by either hot rolling or forging. Alloy steels shall be examined by heat and product analyses and hardenability tests, and shall conform to chemical composition and maximum annealed Brinell hardness requirements. Quality evaluation tests, such as macrotech, microcleanliness, and nondestructive ultrasonic (both immersion and contact examination) inspection, shall be performed as well.1.1 This specification2 covers two kinds of rolls used in machinery for producing corrugated paperboard. Rolls are fabricated of forged bodies and trunnions. The trunnions may be bolted or shrink assembled on one or both ends of the body. A seal weld may be made at the body/trunnion interface. Roll shells are made of carbon/manganese, or low alloy steel as hereinafter described, and are heat treated prior to assembly. Pressure rolls may be ordered surface hardened as Condition H, or without surface hardening as Condition S. Provision is made in Supplementary Requirements S1 and S3 for the optional surface hardening of corrugating rolls.1.2 Corrugating and pressure rolls made to this specification shall not exceed 30 in. [760 mm] in inside diameter. The wall thickness of the roll body shall not be less than 1/12 of the inside diameter or 1 in. [25 mm], whichever is greater, but shall not exceed 4 in. [100 mm]. The wall thickness of the corrugating roll is measured at the bottom of the corrugations in the location of the trunnion fit. The maximum design temperature (MDT) of the roll is 600 °F [315 °C] and the maximum allowable working pressure (MAWP) is 250 psi [1.7 MPa]. The minimum design temperature shall be 40 °F [4 °C] for roll wall thicknesses up to 3 in. [75 mm]. For roll wall thicknesses over 3 in. [75 mm] to 4 in. [100 mm], the minimum design temperature shall be 120 °F [50 °C]. The maximum stresses on the roll bodies from the combined internal and external loading are limited to 18 750 psi [129 MPa] for the Class 2 pressure roll bodies, and 20 000 psi [138 MPa] for Class 1A, 1B, or 5 pressure or corrugating roll bodies in Grades 1 or 2. For the trunnions, the maximum stresses from the combined internal and external loading are limited to 15 000 psi [103.4 MPa] for Classes 3 or 4, or 20 000 psi [138 MPa] for Classes 1A, 1B, or 5 in Grade 2 only. The Grade 1 strength level is not permissible for trunnions.1.3 Referring to Table 1, material to Classes 1A, 1B, or 5 shall be used for the manufacture of corrugating or pressure roll shells, and Class 2 shall be used only for pressure roll shells. Trunnions shall be made from forgings in Classes 1A, 1B, or 5 in Grade 2 strength level as restricted by Footnote B in Table 2 or in forgings in either Class 3 or 4.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 Unless the order specifies the applicable “M” specification designation, the material shall be furnished to the inch-pound units.1.6 Except as specifically required in this standard, all of the provisions of Specification A788/A788M apply.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This practice is intended to cover the extraction, analysis, and information management pertaining to visible wear debris collected from oil system filters or debris retention screens. Further, it is intended that this practice be a practical reference for those involved in FDA.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 These test methods provide a means of measuring the total compressive deflection of chemical-resistant, machinery-grout materials under a sustained load at the test temperature. Test stress and temperature can be selected to simulate anticipated use conditions. For the purposes of these tests, creep is considered to be the compressive deflection in cm per cm [inches per inch], which occurs after the initial loading of the specimen at laboratory temperature. The results do not necessarily correlate for different specimen thicknesses. No correlation has been established to actual-use conditions.1.1 These test methods cover a quantitative, comparative test for compressive creep of chemical-resistant grouting materials under a sustained load at a test temperature. Constant load is maintained using a bolt and spring washers. Measurements are made at laboratory temperature after exposure periods at the selected test temperature.1.2 Test Method A outlines the molding techniques for an unbonded test specimen. Test Method B covers the molding techniques for a bonded test specimen.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice provides the design and dimensional details required for the proper selection of the type of, and correct installation procedures for, thermal insulation materials suitable for use on piping, machinery, and equipment employed in nonnuclear shipboard applications. The insulation and lagging requirements for the removable covers of valves, fittings, flanges, and machinery or equipment, as well as the requirements for thermal insulating tape, are also detailed completely.1.1 This practice covers the selection of types and thicknesses of thermal insulation materials for piping, machinery, and equipment for nonnuclear shipboard applications within the temperature ranges specified in Tables 1-16. Methods and materials for installation, including lagging, are also detailed.1.2 This practice addresses operating temperatures from a low of –20 °F (–29 °C) up to 1200 °F (649 °C).1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Chemical-resistant polymer machinery grouts are used to provide precision support for machinery or equipment.NOTE 2: The machinery or equipment or support bases or plates, or combination thereof, are positioned to the precise elevation and location required. The bases or plates are typically placed on prepared foundations and supported on temporary shims or support bolts (jack screws). Forms are installed to contain the flowable grout. The grout is poured around the perimeter in such a manner as to allow the grout to flow around and under the equipment base or plates. The grout subsequently hardens to provide a strong rigid support layer capable of withstanding the stresses transferred by the equipment to the foundation. Although the actual machinery base plate is typically metal and the cover plate in this test uses acrylic glass, different grouts using acrylic glass cover plates has proven useful for comparative purposes as described in this test in laboratory conditions.5.2 In addition to the required physical properties of the grout, the flow and bearing area achieved are important considerations for effective grout installation. The two characteristics measured by this test method are flow and bearing area.5.3 The flow test simulates typical application conditions for a flowable polymer machinery grout in a laboratory environment. It may be used to evaluate the suitability of a particular grout for a specific application, to compare the flowability and bearing area of two or more grouts, or to evaluate the effects of formulation changes, temperature, mixing techniques, or other factors on flowability.5.4 The estimated amount of upper grout surface contact in percent can be used to compare two or more grouts or show the effects of temperature, formulation changes, or other factors on bearing area. A limited set of results using visual guides (see Fig. 1 and Fig. 2) is used to classify the bearing as “high”—greater than 85 %,” “medium—70 to 85  %,” and “low—less than 70 %.”1.1 This test method covers the measure of flowability of chemical-resistant polymer machinery grouts as evaluated in a 50-mm [2-in.] or 25-mm [1-in.] pour thickness in a laboratory setting. The test method provides for the assessment of upper surface plate contact area (bearing area). These grouts will typically be at least two component formulations that may be used for installations where grout thickness will range from 25 to 150 mm [1 to 6 in.] underneath the base or plates being grouted.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This practice provides the three principal methods of fitting chocks to marine machinery foundations to ensure that the machinery is free of vibration and perfectly aligned after installation.3.1.1 The three principal methods of installing chocks described herein are as follows:3.1.1.1 Type A—Epoxy-based resin, nonshrinking, and3.1.1.2 Type B—Two-piece wedge chocks.3.1.1.3 Type C—Solid, one-piece fitted chocks.1.1 This practice covers the acceptable methods of fitting chocks to marine machinery foundations.1.2 The values stated in SI units shall be regarded as standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
6 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页