微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Uranium hexafluoride is a basic material used to produce nuclear reactor fuel. To be suitable for this purpose, the material must meet criteria for isotopic composition. This test method is designed to determine whether the material meets the requirements described in Specifications C787 and C996.1.1 This test method is applicable to the isotopic analysis of uranium hexafluoride (UF6) with 235U concentrations less than or equal to 5 % and  234U,   236U concentrations of 0.0002 to 0.1 %.1.2 This test method may be applicable to the analysis of the entire range of  235U isotopic compositions providing that adequate Certified Reference Materials (CRMs or traceable standards) are available.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The GESD procedure can be used to simultaneously identify up to a pre-determined number of outliers (r) in a data set, without having to pre-examine the data set and make a priori decisions as to the location and number of potential outliers.3.2 The GESD procedure is robust to masking. Masking describes the phenomenon where the existence of multiple outliers can prevent an outlier identification procedure from declaring any of the observations in a data set to be outliers.3.3 The GESD procedure is automation-friendly, and hence can easily be programmed as automated computer algorithms.1.1 This practice provides a step by step procedure for the application of the Generalized Extreme Studentized Deviate (GESD) Many-Outlier Procedure to simultaneously identify multiple outliers in a data set. (See Bibliography.)1.2 This practice is applicable to a data set comprising observations that is represented on a continuous numerical scale.1.3 This practice is applicable to a data set comprising a minimum of six observations.1.4 This practice is applicable to a data set where the normal (Gaussian) model is reasonably adequate for the distributional representation of the observations in the data set.1.5 The probability of false identification of outliers associated with the decision criteria set by this practice is 0.01.1.6 It is recommended that the execution of this practice be conducted under the guidance of personnel familiar with the statistical principles and assumptions associated with the GESD technique.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This practice establishes a multiple person cold water survival/rescue procedure.3.2 All persons who are identified as water rescuers shall meet the requirements of this practice.3.3 This practice is intended to assist government agencies, state, local, or regional organizations; fire departments; and rescue teams and others who are responsible for establishing a minimum performance for personnel who respond to water emergencies.3.4 The majority of the rescuers performing this technique must be wearing personal flotation devices. These devices should conform to standards set by the appropriate national regulatory authority, that is, the U.S. Coast Guard in the United States, and be in good and serviceable condition.3.5 A water rescuer sometimes may be immersed in cold water for prolonged periods of time. They are unable to get to shore or shore is too far away, rescue is not imminent, no boat is available to get into or on top of, and no flotsam is available. The water rescuer needs to assume a defensive posture to conserve heat and increase survival time.1.1 This practice covers the recommended water rescue procedure for performing the huddle position.1.2 This practice is one in a set of self-rescue techniques for the water rescuer.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification2 covers asphalt binders graded by performance. Grading designations are related to the LTPPBind Online calculated maximum pavement design temperature, the minimum pavement design temperature, and the traffic loading.NOTE 1: For more information on LTPPBind Online, see https://infopave.fhwa.dot.gov/Tools/LTPPBindOnline accessed May 23, 2023.1.2 This specification incorporates Test Method D7405 for determining non-recoverable creep compliance, Jnr. “S,” “H,” “V,” or “E” designations must be specified for standard, heavy, very heavy, and extremely heavy traffic loading, respectively.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.NOTE 2: A guidance document for specifying bodies using R % for elastic properties is under development.NOTE 3: For asphalt binders graded by penetration at 25 °C, see Specification D946/D946M. For asphalt binders graded by viscosity at 60 °C, see Specification D3381/D3381M. For performance-graded asphalt binder, see Specification D6373.NOTE 4: AASHTO R 29 provides non-mandatory information for determining the performance grade of an asphalt binder.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Many competent analytical laboratories comply with accepted quality system requirements. When using standard test methods, their test results on the same sample should agree with those from other similar laboratories within the reproducibility estimates index (R) published in the standard. Reproducibility estimates are generated as part of the interlaboratory studies (ILS), of the type described in Practice E1601. Competent laboratories participate in proficiency tests, such as those conducted in accordance with Practice E2027, to confirm that they perform consistently over time. In both ILS and proficiency testing protocols, it is generally assumed that only one work station is used to generate the data.4.2 Many laboratories have workloads, or logistical requirements, or both, that dictate the use of multiple work stations. Some have multiple stations in the same area (central laboratory format). Other stations are scattered throughout a facility (at-line laboratory format) and in some cases may even reside at different facilities. Often, analysis reports do not identify the workstation used for the testing, even if workstations differ in their testing uncertainties. Problems can arise if clients mistakenly attribute variation in report values to process rather than workstation variability. These problems can be minimized if the laboratory organization determines the overall uncertainty associated with results reported from multiple workstations and assesses the significance of the analytical uncertainty to the production process.4.3 This guide describes a protocol for efficiently optimizing and controlling variability in test results from different workstations used to perform the same test. It harmonizes calibration and control protocols, thereby providing the same level of measurement traceability and control to all workstations. It streamlines documentation and training requirements, thereby facilitating flexibility in personnel assignments. Finally, it offers an opportunity to claim traceability of proficiency test measurements to all included workstations, regardless on which workstation the proficiency test sample was tested. The potential benefits of utilizing this protocol increase with the number of workstations included in the laboratory organization.4.4 This guide can be used to identify and quantify benefits derived from corrective actions relating to under-performing workstations. It also provides means to track improved performance after improvements have been made.4.5 It is assumed that all who use this guide will have an established laboratory quality system. This system shall include the use of documented procedures, the application of statistical control of measurement processes, and participation in proficiency testing. ISO/IEC 17025 describes an excellent model for establishing this type of laboratory quality system.4.6 The general principles of this protocol can be adapted to other types of measurements, such as mechanical testing and on-line process control measurements, such as temperature and thickness gauging. In these areas, users may need to establish their own models for defining data quality objectives and proficiency testing may not be available or applicable.4.7 It is especially important that users of this guide take responsibility for ensuring the accuracy of the measurements made by the workstations to be operated under this protocol. In addition to the checks mentioned in 6.2.3, laboratories are encouraged to use other techniques, including, but not limited to, analyzing some materials by independent methods, either within the same laboratory or in collaboration with other equally competent laboratories. The risks associated with generating large volumes of data from carefully synchronized, but incorrectly calibrated multiple workstations are obvious and must be avoided.4.8 This guide is not intended to provide specific guidance on development of statements of measurement uncertainty such as those required by ISO/IEC 17025. However, the statistical calculations generated using this guide may provide a useful estimate of one Type A uncertainty component used in the calculation of an expanded uncertainty.4.9 This guide does not provide any guidance for determining the bias related to the use of multiple workstations in a laboratory organization.1.1 This guide describes a protocol for optimizing, controlling, and reporting test method uncertainties from multiple workstations in the same laboratory organization. It does not apply when different test methods, dissimilar instruments, or different parts of the same laboratory organization function independently to validate or verify the accuracy of a specific analytical measurement.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to identify the presence of elastic response in a binder and the change in elastic response at two different stress levels. Non-recoverable creep compliance has been shown to be an indicator of the resistance of an asphalt binder to permanent deformation under repeated load.5.2 This test method is also useful as a surrogate for other test methods used to measure elasticity in asphalt binders such as Test Method D5801 (toughness and tenacity), Test Method D6084/D6084M (elastic recovery), and Test Method D7175 (DSR phase angle).NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers the determination of percent recovery and non-recoverable creep compliance of asphalt binders by means of multiple stress creep and recovery (MSCR) testing. The MSCR test is conducted using the dynamic shear rheometer (DSR) at a specified temperature.1.2 This standard is appropriate for unaged material, material aged in accordance with Test Method D2872 (RTFOT), material aged in accordance with Practice D6521 (PAV), and material aged in accordance with both Test Method D2872 and Practice D6521.NOTE 1: The majority of development work on this test method was performed on material aged in accordance with Test Method D2872 (RTFOT).1.3 The percent recovery is intended to provide a means to determine the presence of elastic response and stress dependence of polymer-modified and unmodified asphalt binders.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method may be used for quantitative determinations of Pb in painted and unpainted articles such as toys, children’s products, and other consumer products. Typical test time for quantification of Pb in homogenous samples is 1 to 3 min; and typical test time for quantification of Pb in paint is 4 to 8 min.1.1 This test method uses energy dispersive X-ray fluorescence (EDXRF) spectrometry for detection and quantification of lead (Pb) in paint layers, similar coatings, or substrates and homogenous materials. The following material types were tested in the interlaboratory study for this standard test method: ABS plastic, polyethylene, polypropylene, PVC, glass, zinc alloy, wood, and fabric.1.2 This technique may also be commonly referred to as High Definition X-ray Fluorescence (HDXRF) or Multiple Monochromatic Beam EDXRF (MMB-EDXRF).1.3 This test method is applicable for the products and materials described in 1.1 for a Pb mass fraction range of 14 to 1200 mg/kg for uncoated samples and 30 to 450 mg/kg for coated samples, as specified in Table 1 and determined by an interlaboratory study using representative samples1.4 Ensure that the analysis area of the sample is visually uniform in appearance and at least as large as the X-ray excitation beam at the point of sample excitation.1.5 For coating analysis, this test method is limited to paint and similar coatings. Metallic coatings are not covered by this test method.1.6 X-ray Nomenclature—This standard names X-ray lines using the IUPAC convention with the Siegbahn convention in parentheses.1.7 There are no known ISO equivalent methods to this standard.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Residual fuel oils can contain H2S in the liquid phase, and this can result in hazardous vapor phase levels of H2S in storage tank headspaces. The vapor phase levels can vary significantly according to the headspace volume, fuel temperature, and agitation. Measurement of H2S levels in the liquid phase provides a useful indication of the residual fuel oil’s propensity to form high vapor phase levels, and lower levels in the residual fuel oil will directly reduce risk of H2S exposure. It is critical, however, that anyone involved in handling fuel oil, such as vessel owners and operators, continue to maintain appropriate safety practices designed to protect the crew, tank farm operators and others who can be exposed to H2S.5.1.1 The measurement of H2S in the liquid phase is appropriate for product quality control, while the measurement of H2S in the vapor phase is appropriate for health and safety purposes.5.2 This test method was developed so refiners, fuel terminal operators and independent testing laboratory personnel can analytically measure the amount of H2S in the liquid phase of residual fuel oils.NOTE 1: Test Method D6021 is one of three test methods for quantitatively measuring H2S in residual fuels:1) Test Method D5705 is a simple field test method for determining H2S levels in the vapor phase.2) Test Method D7621 is a rapid test method to determine H2S levels in the liquid phase.5.3 H2S concentrations in the liquid and vapor phase attempt to reach equilibrium in a static system. However, this equilibrium and the related liquid and vapor concentrations can vary greatly depending on temperature and the chemical composition of the liquid phase. A concentration of 1 mg/kg (μg/g) (ppmw) of H2S in the liquid phase of a residual fuel can typically generate an actual gas concentration of >50 μL/L(ppmv) to 100 μL/L(ppmv) of H2S in the vapor phase, but the equilibrium of the vapor phase is disrupted the moment a vent or access point is opened to collect a sample.NOTE 2: Because of the reactivity, absorptivity, and volatility of H2S any measurement method only provides an H2S concentration at a given moment in time.1.1 This test method covers a method suitable for measuring the total amount of hydrogen sulfide (H2S) in heavy distillates, heavy distillate/residual fuel blends, or residual fuels as defined in Specification D396 Grade 4, 5 (Light), 5 (Heavy), and 6, when the H2S concentration in the fuel is in the 0.01 μg/g (ppmw) to 100 μg/g (ppmw) range.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.5, 8.2, 9.2, 10.1.4, and 11.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This procedure should be used for in vivo evaluation of the performance of antibacterial handwash products that are intended to reduce the skin micro flora following repeated use. Activity against the combined transient and resident micro flora may be assessed. Historically counts from the first basin are considered to be transients.4 ,6 The latter measurement is probably more meaningful as the resident population is more stable.5.1.1 This test method is applicable for testing all forms of topical antimicrobial handwash formulations.1.1 This test method covers determining the effectiveness of an antibacterial handwash for reducing the level of aerobic bacterial flora on the hands, following an extended period of use.1.2 A knowledge of microbiological techniques is required for these procedures.1.3 In this test method metric units are used for all applications, except for distance. In this case, inches are used and metric units follow in parentheses.1.4 Performance of this procedure requires the knowledge of regulations pertaining to the protection of human subjects. (Title 21 CFR, Part 50).1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method has been developed by the U.S. EPA Region 5 Chicago Regional Laboratory (CRL).5.2 TTPC may be used in various industrial and commercial products for use as a biocide. Products containing TTPC have been approved for controlling algal, bacterial, and fungal slimes in industrial water systems.2 TTPC should not be persistent in water but may be deposited in sediments at concentrations of concern. Hence, there is a need for quick, easy, and robust method to determine TTPC concentration at trace levels in various soil matrices for understanding the sources and concentration levels in affected soils and sediments.5.3 This method has been used to determine TTPC in sand, a commercial top soil, and four ASTM reference soils (Table 4).1.1 This procedure covers the determination of (Tri-n-butyl)-n-tetradecylphosphonium chloride (TTPC) in a soil matrix by extraction with acetone, filtration, dilution with water, and analysis by liquid chromatography/tandem mass spectrometry. TTPC is a biocide that strongly adsorbs to soils.2 The sample extracts are prepared in a solution of 75 % acetone and 25 % water because TTPC has an affinity for surfaces and particles. The reporting range for this method is from 250 to 10 000 ng/kg. This analyte is qualitatively and quantitatively determined by this method. This method adheres to multiple reaction monitoring (MRM) mass spectrometry.1.2 The method detection limit (Note 1) (MDL) and reporting range (Note 2) for the target analyte are listed in Table 1.NOTE 1: The MDL is determined following the Code of Federal Regulations, 40 CFR Part 136, Appendix B, as a guide utilizing solvent extraction of soil. Two-gram sample of Ottawa sand was utilized. A detailed process determining the MDL is explained in the reference and is beyond the scope of this standard to be explained here.NOTE 2: Reporting range concentration is calculated from Table 2 concentrations assuming a 50-μL injection of the Level 1 calibration standard for TTPC, and the highest level calibration standard with a 20-mL final extract volume of a 2-g soil sample. Volume variations will change the reporting limit and ranges.1.2.1 The reporting limit in this test method is the minimum value below which data are documented as non-detects. Analyte detections between the method detection limit and the reporting limit are estimated concentrations and are not reported following this test method. The reporting limit is calculated from the concentration of the Level 1 calibration standard as shown in Table 2 for TTPC after taking into account a 2-g sample weight and a final extract volume of 20 mL in 75 % acetone/25 % water. The final extract volume is 20 mL because a 15-mL volume of acetone is added to each soil sample and only the liquid layer after extraction is filtered leaving the solid behind followed by the addition of 5 mL of water to the acetone extract.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method developed for the analysis of TPs in soil and sediment samples is based upon an LC/MS/MS analysis. Any type of coupled liquid chromatography/mass spectrometry system may be used that meets the study objectives of the individual project. These may include, but are not limited to: trap, single quadrupoles, time-of-flight, high resolution, and others not mentioned here. 5.2 The MDL and reporting range for TPs are listed in Table 1. This SOP has been tested on Ottawa sand, four ASTM soil types, biosolid sample, and one commercial soil. The P&A QC acceptance criteria are listed in Table 3. Tables 4-17 display the TC and surrogate recoveries in the various soil types. 40 CFR Part 136, Appendix B was used as a guide to determine the MDLs. The 40 CFR Part 136 MDL criteria were not met for NP2EO; this does not affect the method because the SOP only reports to the RL and is not a regulatory method. All site sample results are not reported below the RL using this method. RLCS concentrations may be reported below the RL because they are spiked at or near the RL. (A) Uncertainty calculation based upon 95 % confidence interval and a two-tailed Student t distribution.    Uncertainty = Student t Value [(standard deviation) / (number of LCS)1/2]. (A) P&A values are after subtraction of average of MB if ≥RL. (A) P&A values are after subtraction of average of MB if ≥RL. (A)  5.3 The RL for a specific soil sample may differ from that listed depending on the nature of the interferences in the sample matrix. Variability in historical LCS spike recovery may be used to estimate uncertainty. The estimate of minimum laboratory contribution to measurement uncertainty of this test method for each analyte is listed in Table 3. These values are derived from P&A samples from the initial IDOC study for this test method. The uncertainty will be greater near the RL and much greater near the DL. Also, uncertainty estimated based on variability in LCS recovery is conservative because some sources of variability are not included, such as subsample variability and matrix analyte recovery. This SOP covers multiple soil matrices and the uncertainty among the various matrices is variable. 1.1 This test method covers analysis of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), octylphenol (OP), and bisphenol A (BPA), referred to collectively as target phenols (TPs), in soil, sediments, and biosolids by extraction with acetone, filtration, dilution with water, and analysis by liquid chromatography/tandem mass spectrometry. The sample extracts are prepared in a solution of 75 % acetone and 25 % water because TPs have an affinity for surfaces and particles that is more pronounced at lower concentrations. The range of applicability of the test method is shown in Table 1. The method may be extended outside of these ranges depending on additional performance studies not undertaken here. 1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 With the advent of thick, highly angled aircraft transparencies, multiple imaging has been more frequently cited as an optical problem by pilots. Secondary images (of outside lights), often varying in intensity and displacement across the windscreen, can give the pilot deceptive optical cues of his altitude, velocity, and approach angle, increasing his visual workload. Current specifications for multiple imaging in transparencies are vague and not quantitative. Typical specifications state “multiple imaging shall not be objectionable.”5.2 The angular separation of the secondary and primary images has been shown to relate to the pilot's acceptability of the windscreen. This procedure provides a way to quantify angular separation so a more objective evaluation of the transparency can be made. This procedure is of use for research of multiple imaging, quantifying aircrew complaints, or as the basis for windscreen specifications.5.3 It is of note that the basic multiple imaging characteristics of a windscreen are determined early in the design phase and are virtually impossible to change after the windscreen has been manufactured. In fact, a perfectly manufactured windscreen has some multiple imaging. For a particular windscreen, caution is advised in the selection of specification criteria for multiple imaging, as inherent multiple imaging characteristics have the potential to vary significantly depending upon windscreen thickness, material, or installation angle. Any tolerances that might be established are advised to allow for inherent multiple imaging characteristics.1.1 This test method covers measuring the angular separation of secondary images from their respective primary images as viewed from the design eye position of an aircraft transparency. Angular separation is measured at 49 points within a 20 by 20° field of view. This procedure is designed for performance on any aircraft transparency in a laboratory or in the field. However, the procedure is limited to a dark environment. Laboratory measurements are done in a darkened room and field measurements are done at night (preferably between astronomical dusk and astronomical dawn).1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard possibly involves hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 TTPC may be used in various industrial and commercial products for use as a biocide. Products containing TTPC have been approved for controlling algal, bacterial, and fungal slimes in industrial water systems.2 TTPC should not be persistent in water but may be deposited in sediments at concentrations of concern. Hence, there is a need for quick, easy and robust method to determine TTPC concentration at trace levels in water matrices for understanding the sources and concentration levels in affected areas. 5.2 This method has been used to determine TTPC in reagent water and a river water (Table 8). (A) Solution A: Level 8 stock solution prepared according to Section 12 and at Table 4 concentrations.(B) Solution B: 75 % Acetone, 25 % Water. Note 1: This test method has been used to characterize TTPC in real world water samples with success and similar recoveries as shown in Table 8. 1.1 This test method covers the determination of (Tri-n-butyl)-n-tetradecylphosphonium chloride (TTPC) in water by dilution with acetone, filtration and analysis by liquid chromatography/tandem mass spectrometry. This test method is not amenable for the analysis of isomeric mixtures of Tributyl-tetradecylphosphonium chloride. TTPC is a biocide that strongly adsorbs to soils.2 The water samples are prepared in a solution of 75 % acetone and 25 % water because TTPC has an affinity for surfaces and particles. The reporting range for this method is from 100 ng/L to 4000 ng/L. This analyte is qualitatively and quantitatively determined by this method. This test method adheres to multiple reaction monitoring (MRM) mass spectrometry. 1.2 A full collaborative study to meet the requirements of Practice D2777 has not been completed. This test method contains single-operator precision and bias based on single-operator data. Publication of standards that have not been fully validated is done to make the current technology accessible to users of standards, and to solicit additional input from the user community. 1.3 The Method Detection Limit3 (MDL) and Reporting Range4 for the target analyte are listed in Table 1. 1.3.1 The reporting limit in this test method is the minimum value below which data are documented as non-detects. Analyte detections between the method detection limit and the reporting limit are estimated concentrations and are not reported following this test method. The reporting limit is calculated from the concentration of the Level 1 calibration standard as shown in Table 4 for TTPC after taking into account a 2.5 mL water sample volume and a final diluted sample volume of 10 mL (75 % acetone/25 % water). The final solution volume is 10 mL because a 7.5 mL volume of acetone is added to each 2.5 mL water sample which is shaken and filtered. 1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Pesticides may be used in various agricultural and household products. These products may enter waterways at low levels through run-off or misuse near water resources. Hence, there is a need for quick, easy and robust method to determine pesticide concentration in water matrices for understanding the sources and concentration levels in affected areas.5.2 This method has been single-laboratory validated in reagent water and surface waters (Tables 12-14).1.1 This test method covers a method for analysis of selected pesticides in a water matrix by filtration followed with liquid chromatography/electrospray ionization tandem mass spectrometry analysis. The samples are prepared in 20 % methanol, filtered, and analyzed by liquid chromatography/tandem mass spectrometry. This method was developed for an agricultural run-off study, not for low level analysis of pesticides in drinking water. This method may be modified for lower level analysis. The analytes are qualitatively and quantitatively determined by this method. This method adheres to multiple reaction monitoring (MRM) mass spectrometry.1.2 A full collaborative study to meet the requirements of Practice D2777 has not been completed. This standard contains single-operator precision and bias based on single-operator data. Publication of standards that have not been fully validated is done to make the current technology accessible to users of standards, and to solicit additional input from the user community.1.3 A reporting limit check sample (RLCS) is analyzed during every batch to ensure that if an analyte was present in a sample at or near the reporting limit it would be positively identified and accurately quantitated within set quality control limits. A method detection limit (MDL) study was not done for this method, the method detection limits would be much lower than the reporting limits in this method and would be irrelevant. A RLCS was determined to be more applicable for this standard. If this method is adapted to report much lower or near the MDL then a MDL study would be warranted.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The Reporting Range for the target analytes are listed in Table 1.1.5.1 The reporting limit in this test method is the minimum value below which data are documented as non-detects. The reporting limit is calculated from the concentration of the Level 1 calibration standard as shown in Table 6 after taking into account an 8 mL water sample volume and a final diluted sample volume of 10 mL (80 % water/20 % methanol).1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

This specification covers commercial multiple-tank dishwashing machines of the continuous type, oval shaped, with horizontal table conveyor systems. According to direction of rotation, the dishwashing machines can be classified into two types: Type I-CW (clockwise) rotation is designed and supplied to accept the feeding of soiled tableware from the right side, when viewed from above and Type II-CCW (counterclockwise) rotation is designed and supplied to accept the feeding of soiled tableware from the left side, when viewed from above. These dishwashing machines can also be classified into three styles: Style 1 is a steam heated machine, with two classes namely Class A which uses injectors and Class B which uses heat exchange coils. Style 2 is an electrically heated dishwashing machine. Style 3 on the other hand is gas heated with two classes namely Class C which uses natural gas and Class D which uses LP gas. Furthermore, four types of arrangements for these machines can be made: Arrangement A is with tray rail and table-mounted garbage disposal machine; Arrangement B is with food waste trough instead of tray rail and garbage disposal machine in center of trough; Arrangement C is the same as Arrangement A, except disposal unit is not available; and Arrangement D is the same as Arrangement B, except that there is no disposal unit. Materials used in the manufacture of these machines shall consist of corrosion-resistant steel, corrosion resisting material, nickel-copper alloy and plastics. These materials used shall be free from defects that would affect the performance or maintainability of individual components of the overall assembly. The dishwashing machine shall be complete so that when connected to the specified source of power, water supply, heating means (steam or electric) and drainage, detergent and rinse agent feeder as applicable, the unit can be used for its intended function. Dishwashers shall be quiet in operation, free from objectionable splashing of water to the outside of the machine. Operational test, leakage test, and performance profiles shall be done in order to determine the overall efficiency of the dishwashing machine.1.1 This specification covers commercial multiple-tank dishwashing machines of the continuous type, oval shaped, with horizontal table conveyor systems.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazards caveat pertains only to Section 12, Test Methods, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
25 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页