
【国外标准】 Standard Test Method for Detection of Water-soluble Petroleum Oils by A-TEEM Optical Spectroscopy and Multivariate Analysis
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Source water protection calls for a rapid and reliable optical method to identify and quantify the oil spill contamination, such as water-soluble fraction of aromatic compounds from the BTEX family (benzene, toluene, ethylbenzene, and xylenes) and naphthalene from the polycyclic aromatic hydrocarbon (PAH) group.5.2 This test method identifies the presence of contamination and quantifies the target contamination component(s) to provide a threshold-based alert signal.5.3 This test method can be used by drinking water treatment plant operators and decision makers as a first line of defense for both initially detecting petroleum product spills, as well as tracking attenuation over time, in source water to prevent contaminant uptake into the processed water and treatment infrastructure.1.1 This test method covers the (1) detection of trace level (µg/L range) of oil and petroleum (water-soluble fraction) pollutants in surface and ground drinking water sources, (2) identification of the compounds, and (3) alerting analysts with a contaminant concentration prediction. This test method facilitates identification and quantification from 20 to 1000 µg/L of target contaminants, including: water-soluble fraction of aromatic compounds from the BTEX family (benzene, toluene, ethylbenzene, and xylenes) and naphthalene from the polycyclic aromatic hydrocarbon (PAH) group, referred to as BTEXN in this test method, in water samples with up to 15 mg/L of dissolved organic carbon (DOC). The main approach involves analyzing and characterizing key water intake locations before the treatment and developing the contaminant library. The water-soluble (BTEXN) contaminants are associated with, but not limited to petroleum oils and fuels including commercial diesel fuel, gasoline, kerosene, heavy oil, fuel oil and lubricate oil, etc.1.2 The data sets are analyzed using multivariate methods to test contaminant identification and quantification. The multivariate methods include classification and regression algorithms to analyze fluorescence EEM data acquired in the laboratory. The common goal of these algorithms is to reduce multidimensionality and eliminate noise of fluorescence and background signals. Automated identification-quantification methods linked directly to the instrument acquisition-analysis software are commercially available.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8431-22
标准名称:
Standard Test Method for Detection of Water-soluble Petroleum Oils by A-TEEM Optical Spectroscopy and Multivariate Analysis
英文名称:
Standard Test Method for Detection of Water-soluble Petroleum Oils by A-TEEM Optical Spectroscopy and Multivariate Analysis标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester