微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Acceptance Testing—This method of testing fabrics for resistance to pilling is not recommended for acceptance testing. If it is used for acceptance testing, it should be used with caution because interlaboratory data are not available. In some cases the purchaser and the supplier may have to test a commercial shipment of one or more specific materials by the best available method, even though the method has not been recommended for acceptance testing.5.1.1 If there are differences or practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, the test samples should be used that are as homogeneous as possible, drawn from the material from which the disparate test results were obtained, and randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 The pilling of textile fabrics is a very complex property because it is affected by many factors which may include type of fiber or blends, fiber dimensions, yarn and fabric construction, fabric finishing treatments and refurbishing method. Testing before refurbishing may be advisable. The pilling resistance of a specific fabric in actual wear varies more with general conditions of use and individual wearers than in replicate fabric specimens subjected to controlled laboratory tests. This experience should be borne in mind when adopting levels of acceptability for any series of standards.5.3 Pills vary appreciably in size and appearance and depend on the presence of lint and degree of color contrast. These factors are not evaluated when pilling is rated solely on the number of pills. The development of pills may be accompanied by other surface phenomena such as loss of cover, color change, or the development of fuzz. Since the overall acceptability of a specific fabric is dependent on both the characteristics of the pills and the other factors affecting surface appearance, it is suggested that fabrics tested in the laboratory be evaluated subjectively with regard to their acceptability and not rated solely on the number of pills developed. A series of standards, based on graduated degrees of surface change of the fabric type being tested, may be set up to provide a basis for subjective ratings. The visual standards are most advantageous when the laboratory test specimens correlate closely in appearance with worn fabrics and show a similar ratio of pills to fuzz. Counting the pills and weighing their number with respect to their size and contrast, as a combined measure of pilling resistance, is not recommended because of the excessive time required for counting, sizing, and calculation.5.4 The degree of fabric pilling is evaluated by comparing the tested specimens with visual standards, which may be actual fabrics or photographs of fabrics, showing a range of pilling resistance. The observed resistance to pilling is reported on an arbitrary scale ranging from 5 (no pilling) to 1 (very severe pilling).5.5 This test method is applicable to a wide variety of woven and knitted fabrics that vary in pilling propensity as a result of variations in fiber, yarn & fabric structure, and finish.1.1 This test method covers the determination of the propensity of a fabric to form pills and other related surface changes on textiles using the brush pilling tester. This procedure is generally intended to be used for upholstery, automotive, luggage and heavy duty uniform fabrics because it is highly abrasive. This does not, however, preclude it from being used for other types of fabrics. If unsure, comparison testing should be performed to ensure that this test method replicates pilling on the final product.NOTE 1: For other test methods for the pilling resistance of textiles, refer to Test Methods D3512/D3512M, D3514/D3514M, and D4970/D4970M.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Pipe and duct insulation systems are often evaluated with Test Method E84 to comply with building or mechanical code requirements. This practice describes, in detail, specimen preparation and mounting procedures for single-component pipe or duct insulation systems and for multi-component pipe or duct insulation systems.5.2 The material, system, composite, or assembly tested shall be representative of the completed insulation system used in actual field installations, in terms of the components, including their respective thicknesses.5.3 Pipe and duct insulation systems consist of a variety of materials and constructions.5.4 Some testing laboratories have developed a number of protocols for testing pipe or duct insulation systems which utilize one generic type of materials, all of them with an insulation core and a jacket. Those protocols are the origin of this practice, which makes them generic, to reduce material bias in the standard; they have resulted in the procedures presented in 6.1. The procedures presented in 6.2 – 6.5 address other types of pipe or duct insulation systems.5.5 This practice addresses specimen preparation and mounting of systems of the types described in 5.5.1 – 5.5.3 and testing of supplementary materials as described in 5.6.5.5.1 Multi-component systems containing an insulation core and a jacket, with or without adhesive between insulation core and jacket, not intended to be bonded to a pipe or duct substrate. Specimen preparation and mounting for such systems is described in 6.1 if they are self-supporting and in 6.2 if they are not self-supporting.5.5.2 Single component systems, not intended to be bonded to a pipe or duct substrate. Specimen preparation and mounting for such systems is described in 6.3 if they are self-supporting and in 6.4 if they are not self-supporting.5.5.3 Systems intended to be bonded to a pipe or duct substrate. Specimen preparation and mounting for such systems is described in 6.5.5.5.4 Reflective insulation materials (see 3.2.10 and 3.2.11) intended to be used as pipe or duct insulation materials and installed with an air gap shall be tested using the procedures for specimen preparation and mounting procedures described in Practice E2599. Reflective insulation materials intended to be used as pipe or duct insulation materials and installed without an air gap shall be tested using the specimen preparation and mounting procedures described in Section 6 of this practice.5.5.5 Specimen preparation and mounting procedures for systems not described in this practice shall be added as the information becomes available.5.6 Supplementary Materials: 5.6.1 It is recognized that supplementary materials for pipe or duct insulation systems are normally able to generate heat, flame or smoke. Thus, the fire safety of the entire system depends, at least to some extent, on the fire performance of supplementary materials. Consequently, the fire-test-response characteristics of all supplementary materials shall be assessed to obtain a full assessment of the fire-test-response of the pipe or duct insulation system. See Appendix X1.5.6.2 Supplementary materials are often present intermittently spaced, and not for an extended length, in a pipe or duct insulation system. Thus, it is not always possible to suitably test them in conjunction with a pipe or duct insulation system.5.6.3 Testing of Supplementary Materials—Supplementary materials that have not been fully tested in conjunction with the pipe or duct insulation system, in accordance with Section 6, shall be tested for flame spread and smoke development as single-component systems, in accordance with Test Method E84.5.7 The limitations for this procedure are those associated with Test Method E84.1.1 This practice describes procedures for specimen preparation and mounting when testing pipe and duct insulation materials to assess flame spread and smoke development as surface burning characteristics using Test Method E84.1.2 If the pipe or duct insulation materials to be tested are reflective insulation materials (see 3.2.10 and 3.2.11), the materials shall be tested using the procedures for specimen preparation and mounting described in Practice E2599 and not the procedures described in 6.1 through 6.6.1.3 Testing is conducted with Test Method E84.1.4 This practice does not provide pass/fail criteria that can be used as a regulatory tool.1.5 Use the values stated in inch-pound units as the standard, in referee decisions. The values in the SI system of units are given in parentheses, for information only; see IEEE/ASTM SI-10 for further details.1.6 This fire standard cannot be used to provide quantitative measures.1.7 Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests. Fire testing involves hazardous materials, operations, and equipment. This standard gives instructions on specimen preparation and mounting, but the fire-test-response method is given in Test Method E84. See also Section 8.1.8 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered requirements of the standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Acceptance Testing—This method of testing fabrics for resistance to pilling is not recommended for acceptance testing. If it is used for acceptance testing, it should be used with caution because the between-laboratory precision is poor. In some cases the purchaser and the supplier may have to test a commercial shipment of one or more specific materials by the best available test method, even though the test method is not recommended for acceptance testing.5.1.1 If there are differences or practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, the test samples should be used that are as homogeneous as possible, drawn from the material from which the disparate test results were obtained, and randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.5.2 The pilling of textile fabrics is a very complex property because it is affected by many factors which may include type of fiber or blends, fiber dimensions, yarn and fabric construction, fabric finishing treatments and refurbishing method. Testing before refurbishing may be adviseable. The pilling resistance of a specific fabric in actual wear varies more with general conditions of use and individual wearers than in replicate fabric specimens subjected to controlled laboratory tests. This experience should be borne in mind when adopting levels of acceptability for any series of standards.5.3 Pills vary appreciably in size and appearance and depend on the presence of lint and degree of color contrast. These factors are not evaluated when pilling is rated solely on the number of pills. The development of pills may be accompanied by other surface phenomena such as loss of cover, color change, or the development of fuzz. Since the overall acceptability of a specific fabric is dependent on both the characteristics of the pills and the other factors affecting surface appearance, it is suggested that fabrics tested in the laboratory be evaluated subjectively with regard to their acceptability and not rated solely on the number of pills developed. A series of standards, based on graduated degrees of surface change of the fabric type being tested, may be set up to provide a basis for subjective ratings. The visual standards are most advantageous when the laboratory test specimens correlate closely in appearance with worn fabrics and show a similar ratio of pills to fuzz. Counting the pills and weighing their number with respect to their size and contrast, as a combined measure of pilling resistance, is not recommended because of the excessive time required for counting, sizing, and calculating.5.4 The degree of fabric pilling is evaluated by comparing the tested specimens with visual standards, which may be actual fabrics or photographs of fabrics, showing a range of pilling resistance. The observed resistance to pilling is reported on an arbitrary scale ranging from 5 (no pilling) to 1 (very severe pilling).5.5 This test method is applicable to a wide variety of woven and knitted fabrics that vary in pilling propensity as a result of variations in fiber, yarn and fabric structure, and finish.1.1 This test method covers the determination of the propensity of a fabric to form pills and other related surface changes on textiles using the random tumble pilling tester. The procedure is generally applicable to all types of woven and knitted apparel fabrics.NOTE 1: For other test methods for the pilling resistance of textiles, refer to Test Methods D3511/D3511M, D3514/D3514M, and D4970/D4970M.1.2 Some fabrics that have been treated with a silicone resin may not be satisfactorily tested by this procedure because the silicone resin may transfer onto the cork liners in the test chamber and cause erroneous results.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Acceptance Testing—This method of testing fabrics for resistance to pilling is not recommended for acceptance testing. If it is used for acceptance testing, it should be used with caution because interlaboratory data are not available. In some cases the purchaser and the supplier may have to test a commercial shipment of one or more specific materials by the best available method, even though the method has not been recommended for acceptance testing.5.1.1 If there is a disagreement arising from differences in values reported by the purchaser and the supplier when using Test Method D3514 for acceptance testing, the statistical bias, if any, between the laboratory of the purchaser and the laboratory of the supplier should be determined based on testing specimens randomly drawn from one sample of material of the type being evaluated. Competent statistical assistance is recommended for the investigation of bias. A minimum of two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average test results from the two laboratories should be compared using an acceptable statistical protocol and probability level chosen by the two parties before the testing begins. Appropriate statistical disciplines for comparing data must be used when the purchaser and supplier cannot agree. If a bias is found, either its cause must be found and corrected, or the purchaser and the supplier must agree to interpret future test results with consideration for the known bias.5.2 The pilling of textile fabrics is a very complex property because it is affected by many factors which may include type of fiber or blends, fiber dimensions, yarn and fabric construction, and fabric finishing treatments. The pilling resistance of a specific fabric in actual wear varies more with general conditions of use and individual wearers than in replicate fabric specimens subjected to controlled laboratory tests. This experience should be borne in mind when adopting levels of acceptability for any series of standards.5.3 Finishes and fabric surface changes may exert a large effect on pilling. It is recommended that fabrics be tested after laundering or drycleaning, or both. Testing before refurbishing may also be advisable. Prior agreement between interested parties should determine the state of test.5.4 Pills vary appreciably in size and appearance and depend on the presence of lint and degree of color contrast. These factors are not evaluated when pilling is rated solely on the number of pills. The development of pills may be accompanied by other surface phenomena such as loss of cover, color change, or the development of fuzz. Since the overall acceptability of a specific fabric is dependent on both the characteristics of the pills and the other factors affecting surface appearance, it is suggested that fabrics tested in the laboratory be evaluated subjectively with regard to their acceptability and not rated solely on the number of pills developed. A series of standards, based on graduated degrees of surface change of the fabric type being tested, may be set up to provide a basis for subjective ratings. The visual standards are most advantageous when the laboratory test specimens correlate closely in appearance with worn fabrics and show a similar ratio of pills to fuzz. Counting the pills and weighting their number with respect to their size and contrast, as a combined measure of pilling resistance, is not recommended because of the excessive time required for counting, sizing, and calculation.5.5 The degree of fabric pilling is evaluated by comparing the tested specimens with visual standards, which may be actual fabrics or photographs of fabrics, showing a range of pilling resistance. The observed resistance to pilling is reported on an arbitrary scale ranging from 5 (no pilling) to 1 (very severe pilling).5.6 This test method is applicable to a wide variety of woven and knitted fabrics that vary in pilling propensity as a result of variations in fiber, yarn and fabric structure, and finish. The applicability of the test method to non-woven fabrics has not been determined.1.1 This test method covers the determination of the propensity of a fabric to form pills and other related surface changes on textiles using the Stoll Quartermaster Universal Wear Tester with the frosting attachment. The procedure is generally applicable to all types of woven and knitted fabrics.NOTE 1: For other current test methods of testing the pilling resistance of textiles, refer to Test Methods D3511/D3511M, D3512/D3512M, and D4970/D4970M.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 The fabric may be laundered or dry cleaned before testing.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This wipe sampling and indirect analysis test method is used for the general testing of surfaces for asbestos. It is used to assist in the evaluation of surfaces in buildings, such as ceiling tiles, shelving, electrical components, duct work, and so forth. This test method provides an index of the concentration of asbestos structures per unit area sampled as derived from a quantitative measure of the number of asbestos structures detected during analysis.5.1.1 This test method does not describe procedures or techniques required for the evaluation of the safety or habitability of buildings with asbestos-containing materials, or compliance with federal, state, or local regulations or statutes. It is the user's responsibility to make these determinations.5.1.2 At present, a single direct relationship between asbestos sampled from a surface and potential human exposure does not exist. Accordingly, the user should consider these data in relationship to other available information (for example, air sampling data) in their evaluation.5.2 One or more large asbestos-containing particles dispersed during sample preparation may result in large asbestos surface loading results in the TEM analyses of that sample. It is, therefore, recommended that multiple replicate independent samples be secured in the same area, and that a minimum of three such samples be analyzed by the entire procedure.1.1 This test method covers a procedure to identify asbestos in samples wiped from surfaces and to provide an estimate of the concentration of asbestos reported as the number of asbestos structures per unit area of sampled surface. The procedure outlined in this test method employs an indirect sample preparation technique. It is intended to disperse aggregated asbestos into fundamental fibrils, fiber bundles, clusters, or matrices. However, as with all indirect sample preparation techniques, the asbestos observed for quantification may not represent the physical form of the asbestos as sampled. More specifically, the procedure described neither creates nor destroys asbestos, but it may alter the physical form of the mineral fiber aggregates.1.2 This test method describes the equipment and procedures necessary for wipe sampling of surfaces for levels of asbestos structures. The sample is collected onto a particle-free wipe material (wipe) from the surface of a sampling area that may contain asbestos.1.2.1 The collection efficiency of this wipe sampling technique is unknown and will vary among substrates. Properties influencing collection efficiency include surface texture, adhesiveness, and other factors.1.2.2 This test method is generally applicable for an estimate of the surface loading of asbestos structures starting from approximately 1000 asbestos structures per square centimetre.1.3 Asbestos identification by transmission electron microscopy (TEM) is based on morphology, electron diffraction (ED), and energy dispersive X-ray analysis (EDXA).1.4 This test method allows determination of the type(s) of asbestos fibers present.1.4.1 This test method cannot always discriminate between individual fibers of the asbestos and nonasbestos analogues of the same amphibole mineral.1.4.2 There is no lower limit to the dimensions of asbestos fibers that can be detected. However, in practice, the lower limit to the dimensions of asbestos fibers, that can be detected, is variable and dependent on individual microscopists. Therefore, a minimum length of 0.5 μm has been defined as the shortest fiber to be incorporated in the reported results.1.5 The values stated in SI units are to be regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Surface cleaning is necessary to prepare clay brick masonry surfaces for application of coatings intended for water repellent protection. Surface cleaning helps to ensure proper adhesion or even penetration of the coating and to prevent unintended sealing-in of stains.4.2 This practice addresses surface cleaning only. Other preparation or remedial repairs, such as repointing the masonry or replacing of units, may be necessary and must be completed prior to application of the water repellent treatment.1.1 This practice covers non-abrasive surface cleaning of clay brick masonry to remove surface contaminants such as dirt, grease, loose material, soot, fly ash, hydrocarbon residues, algae, etc. in preparation for the application of water repellent coatings without damaging or altering the surface appearance of the clay brick masonry.1.2 Procedures included in this practice are water cleaning, detergent water cleaning, pressurized water cleaning, steam cleaning, and acid cleaning. It is not intended for the cleaning of newly constructed brick masonry. Use of procedures described in this practice may not be appropriate where the surface is of a historical nature.1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard information see Section 5, 6.4.1.1, and 6.4.1.2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 To establish a proper calibration area for nuclear surface gauges.5.2 To reduce the chance of improper calibration.NOTE 1: The quality of the results produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of practice D3740 are generally considered capable of competent and objective testing/inspection/etc. Users of this standard are cautioned that compliance with practice D3740 does not in itself assure a means of evaluating some of those factors.1.1 This guide outlines procedures for setup of a nuclear gauge calibration facility in either a shielded bay or an unshielded area—Guide A and Guide B, respectively.1.2 This guide does not attempt to describe the calibration techniques or methods. It is assumed that this guide will be used by persons familiar with the operations of the gauge and in performing proper calibration, service and maintenance.1.3 This guide does not attempt to address maintenance or service procedures related to the gauge.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document has been approved through ASTM consensus process.1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in practice D6026.1.7.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in the design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Site-fabricated stretch systems used as interior finish are evaluated with Test Method E84 to comply with building, fire, or life safety code requirements. This practice describes specimen preparation and mounting procedures for such materials and systems.5.2 The limitations for this procedure are those associated with Test Method E84.5.3 Additional Limitations—This practice does not apply to test systems that cannot be used to produce self-supporting specimens. If the test specimen is not self-supporting, further guidance can be found in Annex A4 of Test Method E84.5.4 This practice shall not apply to vinyl stretch ceiling materials, which are covered by Practice E2599.1.1 This practice describes procedures for specimen preparation and mounting when testing a site-fabricated stretch system to assess flame spread and smoke developed as surface-burning characteristics using Test Method E84.1.2 Testing is conducted with Test Method E84.1.3 This practice does not provide pass/fail criteria that can be used as a regulatory tool.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. See IEEE/ASTM SI-10 for further details.1.5 This fire standard cannot be used to provide quantitative measures.1.6 Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests. Fire testing involves hazardous materials, operations, and equipment. This standard gives instructions on specimen preparation and mounting, but the fire-test-response method is given in Test Method E84. See also Section 10.1.7 This practice shall not apply to vinyl stretch ceiling materials, which are covered by Practice E2599.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes shall not be considered requirements of the standard.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

7.1 The purpose of this specification is to establish quantitative measurements for wheelchair work that are related to the firmness and stability of a surface material or surface system used as the accessible route and clear ground space at components within a playground.7.2 The specification provides a uniform means of objectively quantifying the performance of different playground surfacing materials.AbstractThis specification establishes minimum characteristics for those factors that determine accessibility. This specification applies to all types of materials that can be used under and around playground equipment. Playground surfaces represented as complying with this specification shall meet all applicable requirements regarding accessibility specified herein. Wheelchair work measurement method - straight propulsion and wheelchair work measurement method – turning shall be performed to conform with the requirements specified.1.1 This specification establishes minimum characteristics for those factors that determine accessibility. This specification applies to all types of materials that can be used as the accessible route through the play area, under and around playground equipment.1.2 The material used as the accessible route through the play area, under and around playground equipment that meets this specification must also comply with Specification F1292 or Test Method F3351, or both, if the surface is within the fall zone.1.3 Surface systems in compliance with this specification will not prevent all types of injuries from occurring when the surface is used.1.4 The SI unit of work is the joule (J), which is defined as the work expended by a force of one newton through a displacement of one meter. The dimensionally equivalent newton-meter (N*m) shall be used only if it is followed by the term “work” so it is not confused to be a torque value. (1 N*m = 0.73756215 pound-force-feet).1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard; see IEEE/ASTM SI 10 for further details.1.6 The following precautionary statement pertains only to the test method portions of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The surface burning characteristics of wood products are often evaluated with Test Method E84 to comply with code requirements. This practice describes specimen preparation and mounting procedures for such materials and systems.5.2 If it can be demonstrated that none of the methods described in this practice are applicable to a particular wood product, other mounting methods shall be permitted to be used. This information shall be included in the report.5.3 The limitations for this procedure are those associated with Test Method E84.1.1 This practice describes procedures for specimen preparation and mounting when testing wood products to assess flames spread and smoke development as surface burning characteristics using Test Method E84 or Test Method E2768.1.1.1 Test Method E2768 uses the same test equipment as Test Method E84.1.2 This practice applies also to laminated products factory-produced with a wood substrate (see 8.6). This practice does not apply to wood veneers or facings intended to be applied on site over a wood substrate, which are covered by Practice E2404.1.3 Testing is conducted with Test Method E84 or with Test Method E2768.1.4 Testing for the reporting of the moisture content of the test specimen is conducted with Test Methods D4442.1.5 This practice does not provide pass/fail criteria that can be used as a regulatory tool.1.6 Units—Use the values stated in inch-pound units as the standard, in referee decisions. The values in the SI system of units are given in parentheses, for information only; see IEEE/ASTM SI-10 for further details.1.7 This fire standard cannot be used to provide quantitative measures.1.8 The text of this standard references notes and footnotes which provide explanatory materials. These notes and footnotes shall not be considered requirements of the standard.1.9 Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests. Fire testing involves hazardous materials and equipment. This standard gives instructions on specimen preparation and mounting, but the fire-test-response method is given in Test Method E84, or in Test Method E2768, as appropriate. See also Section 10.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The existing Test Method F1995, while very useful, is difficult to conduct if an encapsulating dome is applied, and does not reveal the possible failures caused by mechanical stress incompatibility in the overall SMT joint. This mandrel bend test will reveal possible mechanical stress incompatibility between the various adhesives which can result in latent field failures during production handling or with thermal cycling in normal use.4.2 The existing Test Method F2750 does not include specifics for SMD attachments and only addresses the conductivity change of the conductive trace.4.3 The different combinations of SMD types, attachment medias, circuit substrates and process variation can account for significant variation in test outcome.4.4 Bending of printed flexible circuit or their components can affect their visual appearance, mechanical integrity or electrical functionality. This test method simulates conditions that may be seen during manufacture, installation, or use.4.5 Bend testing may be destructive, therefore any samples tested should be considered unfit for future use.1.1 This test method covers a means to test a completed Surface Mounted Device (SMD) joint for bond strength and inter-layer stress compatibility1.2 A completed SMD joint includes; SMD (LED, resistor, etc), PTF ink land (typically silver), conductive adhesive (typically silver), staking compound (non-conductive), and encapsulant (non-conductive).

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice will characterize the distribution of wind with a maximum of utility and a minimum of archive space. Applications of wind data to the fields of air quality, wind engineering, wind energy, agriculture, oceanography, forecasting, aviation, climatology, severe storms, turbulence and diffusion, military, and electrical utilities are satisfied with this practice. When this practice is employed, archive data will be of value to any of these fields of application. The consensus reached for this practice includes representatives of instrument manufacturers which provides a practical acceptance of these theoretical principles used to characterize the wind.1.1 This practice covers a method for characterizing surface wind speed, wind direction, peak one-minute speeds, peak three-second and peak one-minute speeds, and standard deviations of fluctuation about the means of speed and direction.1.2 This practice may be used with other kinds of sensors if the response characteristics of the sensors, including their signal conditioners, are equivalent or faster and the measurement uncertainty of the system is equivalent or better than those specified below.1.3 The characterization prescribed in this practice will provide information on wind acceptable for a wide variety of applications.NOTE 1: This practice builds on a consensus reached by the attendees at a workshop sponsored by the Office of the Federal Coordinator for Meteorological Services and Supporting Research in Rockville, MD on Oct. 29–30, 1992.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 A tiered strategy for characterization of nanoparticle properties is necessary to draw meaningful conclusions concerning dose-response relationships observed during inhalation toxicology experiments. This tiered strategy includes characterization of nanoparticles as produced (that is, measured as the bulk material sold by the supplier) and as administered (that is, measured at the point of delivery to a test subject) (Oberdorster et al. (6)).5.2 Test Methods B922 and C1274 and ISO 9277 and ISO 18757 exist for determination of the as produced surface area of bulk metal and metal oxide powders. During the delivery of nanoparticles in inhalation exposure chambers, the material properties may undergo change and therefore have properties that differ from the material as produced. This test method describes the determination of the as administered surface area of airborne metal oxide nanoparticles in inhalation exposure chambers for inhalation toxicology studies.1.1 This test method covers determination of surface area of airborne metal oxide nanoparticles in inhalation exposure chambers for inhalation toxicology studies. Surface area may be measured by gas adsorption methods using adsorbates such as nitrogen, krypton, and argon (Brunauer et al. (1),2 Anderson (2), Gregg and Sing (3)) or by ion attachment and mobility-based methods (Ku and Maynard (4)). This test method is specific to the measurement of surface area by gas adsorption by krypton gas adsorption. The test method permits the use of any modern commercial krypton adsorption instruments but strictly defines the sample collection, outgassing, and analysis procedures for metal and metal oxide nanoparticles. Use of krypton is required due to the low overall surface area of particle-laden samples and the need to accurately measure the background surface area of the filter used for sample collection. Instrument-reported values of surface area based on the multipoint Brunauer, Emmett and Teller (BET) equation (Brunauer et al. (1), Anderson (2), Gregg and Sing (3)) are used to calculate surface area of airborne nanoparticles collected on a filter.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. State all numerical values in terms of SI units unless specific instrumentation software reports surface area using alternate units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The height of surface profile has been shown to be a factor in the performance of various coatings applied to steel. For this reason, surface profile should be measured prior to coating application to ensure conformance of a prepared surface to profile requirements specified by the manufacturer of a protective coating or the coating job specification.NOTE 2: The peak count/peak density has been shown to be a factor in the performance of various coatings applied to steel. According to research performed by Roper, Weaver and Brandon6, an increase in peak count can improve the adhesion of some coatings to the prepared steel, as well as provide greater resistance to corrosion undercutting once the coating becomes damaged in service.NOTE 3: Optical microscope methods serve as a referee method for surface profile measurement methods A and B. Profile depth designations are based on the concept of mean maximum profile (h max); this value is determined by averaging a given number (usually 20) of the highest peak to lowest valley measurements made in the field of view of a standard measuring microscope. This is done because of evidence that coating performance in any one small area is primarily influenced by the highest surface features in that area and not by the average roughness.71.1 These test methods cover the description of techniques for measuring the profile of abrasive blast cleaned surfaces in the field, shop, and laboratory. There are other techniques suitable for laboratory use not covered by these test methods.1.2 Method B may also be appropriate to the measurement of profile produced by using power tools.NOTE 1: The Method B procedure in this standard was developed for use on flat surfaces. Depending on the radius of the surface, the results could have greater variability with lower values and averages.1.3 SSPC standard SSPC-PA 17 provides additional guidance for determining conformance with surface profile requirements.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 General—CCPs can effectively be used to reclaim surface mines (5-10). First, CCPs are ideally suited for use in numerous reclamation applications. Any type of CCP may be evaluated for use in mine reclamation. Project specific testing is necessary to ensure that the CCPs selected for use on a given project will meet the project objectives. Second, the use of CCPs can save money because they are available in bulk quantities and reduce expenditures for the manufacture and purchase of Portland cement or quicklime. Third, large-scale use of CCPs for mine reclamation conserves valuable landfill space by recycling a valuable product to abate acid mine drainage and reduce the potential for mine subsidence, provided that the CCP is environmentally and technically suitable for the desired use. The availability of CCPs makes it possible to reclaim abandoned mineland that could not otherwise be reclaimed. The potential for leaching constituents contained in CCPs should be evaluated to ensure that there is no adverse environmental impact.4.2 Physical and Chemical Properties and Behavior of CCPs—Fly ash, bottom ash, boiler slag, FGD material and FBC ash, or combinations thereof, can be used for mine reclamation. Each of these materials typically exhibits general physical and chemical properties that must be considered in the design of a mine reclamation project using CCPs. The specific properties of these materials vary from source to source so environmental and engineering performance testing is recommended for the material(s) or combinations to be used in mine reclamation projects.4.2.1 Physical Properties: 4.2.1.1 Unit Weight—Unit weight is the weight per unit volume of material. Fly ash has a low dry unit weight, typically about 50 to 100 pcf (8 to 16 kN/m3). Bottom ash is also typically lighter than coarse grained soils of similar gradation. Stabilized FGD material from a wet scrubber and FGD material from a dry scrubber are also relatively lightweight, with unit weights similar to fly ash.4.2.1.2 Strength—Shear strength is the maximum resistance of a material to shearing stresses. The relatively high shear strength of fly ash is beneficial for CCP flowable fill formulations requiring strengths sufficient to prevent mine subsidence. The shear strength of non-self-hardening fly ash is primarily the result of internal friction. Cementitious CCPs experience a cementing action that is measured as cohesion and increases over time, which results in high compressive strength. Unconfined compressive strengths in excess of 1000 psi can be achieved for cementitious CCPs.4.2.1.3 Specific Gravity—Specific gravity is the ratio of the weight in air of a given volume of solids at a stated temperature to the weight in air of an equal volume of distilled water at a stated temperature. The particle specific gravity of fly ash is relatively low compared to that of natural materials, and generally ranges from 2.1 to 2.6.4.2.1.4 Grain-Size Distribution—Grain-size distribution describes the proportion of various particle sizes present in a material. Fly ash is a uniformly-graded product with spherical, very fine grained particles.4.2.1.5 Moisture Content—Moisture content is the ratio of the mass of water contained in the pore spaces of soil or rock material to the solid mass of particles in that material, expressed as a percentage. CCPs have almost no moisture when first collected after the combustion of coal. Power plant operators sometimes add moisture to facilitate transport and handling, a process termed “conditioning.”4.2.1.6 Coefficient of Permeability—Permeability is the capacity of a material to transmit a liquid. When compacted to its maximum dry density, fly ash can have permeabilities ranging from 10 to 10-3 gpd/ft2 (10-4 to 10-7 cm/s). These permeabilities are comparable to natural silty soils.4.2.2 Chemical Properties: 4.2.2.1 Elemental Composition—The major elemental components of CCPs are silica, aluminum, iron, calcium, magnesium, sodium, potassium, and sulfur. These elements are present in various amounts and combinations dependent primarily on the coal and type of CCP. The elements combine to form amorphous (glassy) or crystalline phases. Trace constituents may include elements such as arsenic, boron, cadmium, chromium, copper, chlorine, mercury, manganese, molybdenum, selenium, or zinc.4.2.2.2 Phase Associations—The primary elemental constituents of CCPs are present either as amorphous (glassy) phases or crystalline phases. Coal combustion fly ash is typically 70+ % amorphous material. FGD and FBC products are primarily crystalline, and the crystalline phases typically include lime (CaO), portlandite (Ca(OH)2), hannebachite (CaSO3 · 1/2 H2O), and forms of calcium sulfate.4.2.2.3 Free Lime Content—Free lime content varies among CCP sources and other potential activators (for example, lime kiln dust, cement kiln dust, quicklime, or Portland cement). Variability of free lime content in CCP sources is due to the type and efficiency of the emissions control technology that is used. FBC products typically contain up to 10 % free lime, while most Class F fly ash has no free lime content. The free lime content of other potential activators is also variable. For example, cement kiln dust typically ranges from 20 to 30 % free lime whereas quicklime contains 100 % free lime.4.2.2.4 Pozzolanic Activity—Most CCPs, with the exception of FGD material, are characterized as pozzolans due to the presence of siliceous or siliceous and aluminous materials that in themselves possess little or no cementitious value but will, in finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form compounds possessing cementitious properties.4.2.2.5 Buffer Capacity—The buffer capacity of the CCP is important in maintaining the high pH that generally is a requirement for neutralizing acidic materials such as acid mine drainage or for minimizing acid formation from acid forming materials. The CCP must have enough buffer capacity to maintain the pH of the treated areas so the area remains stable over time and under environmental stresses. Test Methods C400 can be applied to evaluate the buffer capacity of the CCP. Determine the basicity factor for the CCP as noted in Test Method B of Test Methods C400.4.3 Environmental Considerations: 4.3.1 Regulatory Framework: 4.3.1.1 Federal—The U.S. Department of the Interior Office of Surface Mining (OSM) is charged with the responsibility of ensuring that the national requirements for protecting the environment during coal mining are met and making sure the land is reclaimed after it is mined. When the use of CCPs happens at surface coal mines, state or federal coal-mining regulators are involved to the extent that SMCRA (Surface Mining Control and Reclamation Act) requires the mine operator to ensure that:(1) All toxic materials are treated, buried, and compacted, or otherwise disposed of, in a manner designed to prevent contamination of ground or surface water (30 CFR 816/817.41).(2) The proposed land use does not present any actual or probable threat of water pollution (30 CFR 816/817.133).(3) The permit application contains a detailed description of the measures to be taken during mining and reclamation to ensure the protection of the quality and quantity of surface and ground water systems, both on- and off-site, from adverse effects of the mining and reclamation process (30 CFR 780.21 and Sections 401.402, or 404 of the Clean Water Act).(4) The rights of present users of such water are protected (30 CFR 816/817.41).(5) Any disposal of CCPs at mine sites must be in accordance with those standards and with applicable solid waste disposal requirements (30 CFR 816/817.89).SMCRA gives primary responsibility for regulating surface coal mine reclamation to the states, and 24 coal-producing states have chosen to exercise that responsibility. On federal lands and Indian reservations (Navajo, Hopi, and Crow) and in the coal states that have not set up their own regulatory programs (Tennessee and Washington), OSM issues the coal mine permits, conducts the inspections, and handles the enforcement responsibilities. As a result of the activities associated with the SMCRA, coal mine operators now reclaim as they mine, and mined lands are no longer abandoned without proper reclamation. OSM also collects and distributes funds from a tax on coal production to reclaim mined lands that were abandoned without being reclaimed before 1977. OSM has a Coal Combustion Residues Management Program that focuses on providing expert technical information on the use of CCPs in mine reclamation for the mining industry, regulatory agencies, and other stakeholders. Use of CCPS in reclamation procedures should be proposed in the mining permit application if possible, detailing the type and characteristics of the proposed CCP and the specific beneficial use for the location proposed. In 1999, U.S. Environmental Protection Agency (EPA) completed a two-phased study of CCPs for the U.S. Congress as required by the Bevill Amendment to RCRA. At the conclusion of the first phase in 1993, EPA issued a formal regulatory determination that the characteristics and management of the four large-volume fossil fuel combustion waste streams (that is, fly ash, bottom ash, boiler slag, and flue gas emission control waste) do not warrant hazardous waste regulation under RCRA and that utilization practices for CCPs appear to be safe. In addition, EPA “encourage[d] the utilization of coal combustion by-products and support[ed] state efforts to promote utilization in an environmentally beneficial manner.” In the second phase of the study, EPA focused on the by-products generated from FBC boiler units and the use of CCPs from FBC and conventional boiler units for mine reclamation, among other things. Following completion of the study, EPA issued a regulatory determination that again concluded that hazardous waste regulation of these combustion residues was not warranted. However, EPA also decided to develop national solid waste regulatory standards for CCPs, including standards for placement of CCPs in surface or underground mines, either under RCRA, SMCRA, or a combination of the two programs (65 CFR 32214, May 22, 2000).4.3.1.2 State and Local—There is considerable variation in state-mandated permitting and other regulatory requirements for CCP utilization. Some states have specific beneficial use policies, while other states have no regulations or guidance addressing beneficial use. Although the NEPA (National Environmental Policy Act) strictly applies only to federally funded projects, many states have similar mechanisms for assessing the environmental impacts of non-Federal projects. These mechanisms may require state permits that address any or all of the following issues: wetlands/waterways, National Pollutant Discharge Elimination System (NPDES) discharge, underground injection, erosion and sediment control, air quality considerations, and storm water management.4.3.2 Water Quality—When planning to use CCPs for mine reclamation, one should consider the potential impacts on ground water and surface water to ensure protection of human health and the environment.4.3.2.1 Ground Water—The design and implementation of a mine reclamation project should consider the potential ground water impacts of CCPs to ensure the protection of human health and the environment. Considerable research has been conducted to assess and predict the potential impacts of CCP utilization on ground water quality. An assessment of ground water quality impacts should be performed by a qualified professional and should take into account project-specific considerations such as composition of CCPs, the typical leachability of CCPs, presence of acid forming materials or acid mine drainage, placement of CCPs relative to the ground water table, rates of infiltration, the type of placement used for the CCP, and constituent migration, attenuation in ground water, and location of sensitive receptors (that is, wells). Where protection of ground water is a special concern, the leaching characteristics of the CCP should be evaluated as part of the assessment of constituent migration and attenuation. Consideration should be given to the leachability of the CCP in the presence of AMD.NOTE 1: It is highly recommended that up-gradient and down-gradient wells be installed to determine background groundwater conditions prior to CCP placement. Then, following placement of CCPs, periodic monitoring of these wells should be done to determine any potential groundwater impact.]4.3.2.2 Surface Water—CCPs may affect surface water bodies during and after placement activities as a result of erosion and sediment transport. The engineering and construction practices recommended to minimize these effects on surface waters (in accordance with the requirements of the 30 CFR 816.43 through 816–49 and any applicable federal or state permit) include storing the CCPs in stockpiles employing effective storm water management controls to maximize runoff and minimize run-on. Impacts could also be minimized by limiting size of active working face of area being reclaimed.4.3.3 Air Quality—When planning to use CCPs for mine reclamation, one should consider the potential impacts to air quality including dusting and emissions.4.3.3.1 Dust Control—Dusting must be controlled during the transport and handling of CCPs in order to avoid fugitive dust and to ensure worker safety. Dust control measures routinely used on earthwork projects are effective in minimizing airborne particulates at CCP storage sites. Typical controls include appropriate hauling methods, use of windbreaks, moisture conditioning of the CCPs, storage in bins or silos, covering the CCPs with large tarpaulins, wetting or covering exposed CCP surfaces, and paving or wetting unpaved high-traffic haul roads with coarse materials.4.3.3.2 Radionuclides—Coal and fly ash are not significantly enriched in radioactive elements or in associated radioactivity compared to common soils or rocks (11). Certain radioactive elements including radium and uranium are known to occur naturally in CCPs (12) and other fill materials. The U.S. Department of Energy estimated the radium concentration of fly ash to be no more than 3.0 pCi/g (13). Radon emissions from the CCPs are not likely to exceed the naturally occurring ambient emissions.4.4 Economic Benefits—The use of CCPs for mine reclamation can have economic benefits. These benefits are affected by local and regional factors, including production rates, processing and handling costs, transportation costs, availability and cost of competing materials, environmental concerns, and the experience of materials specifiers, design engineers, purchasing agents, contractors, legislators, regulators, and other professionals. CCPs are competing as manufactured materials and not as waste products. Since CCPs are produced in the process of manufacturing electricity, these materials can present an advantage when utilized as raw products for finished goods. This is primarily due to the low overheads involved with the material production cost and the fact that some, but not all coal-fired power plants have immediate access to low-cost transportation. The transport of coal to the power plant can provide an excellent opportunity to return CCPs to a mine site to aid in mine reclamation projects.1.1 This guide covers the beneficial use of coal combustion products (CCPs) for abatement of acid mine drainage and revegetation for surface mine reclamation applications related to area mining, contour mining, and mountaintop removal mining. It does not apply to underground mine reclamation applications. There are many important differences in physical and chemical characteristics that exist among the various types of CCPs available for use in mine reclamation. CCPs proposed for each project must be investigated thoroughly to design CCP placement activities to meet the project objectives. This guide provides procedures for consideration of engineering, economic, and environmental factors in the development of such applications.1.2 The utilization of CCPs under this guide is a component of a pollution prevention program; Guide E1609 describes pollution prevention activities in more detail. Utilization of CCPs in this manner conserves land, natural resources, and energy.1.3 This guide applies to CCPs produced primarily from the combustion of coal.1.4 The testing, engineering, and construction practices for using CCPs in mine reclamation are similar to generally accepted practices for using other materials, including cement and soils, in mine reclamation.1.5 Regulations governing the use of CCPs vary by state. The user of this guide has the responsibility to determine and comply with applicable regulations.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
224 条记录,每页 15 条,当前第 1 / 15 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页